单机搭建hadoop环境(包括hdfs、yarn、hive)

这篇具有很好参考价值的文章主要介绍了单机搭建hadoop环境(包括hdfs、yarn、hive)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

单机可以搭建伪分布式hadoop环境,用来测试和开发使用,hadoop包括:

hdfs服务器,

yarn服务器,yarn的前提是hdfs服务器,

在前面两个的基础上,课可以搭建hive服务器,不过hive不属于hadoop的必须部分。

过程不要想的太复杂,其实挺简单,这里用最糙最快最直接的方法,在我的单节点虚拟机上,搭建一个hdfs+yarn+hive:

首先,要配置好Java的JAVA_HOME和PATH(etc/hadoop/hadoop-env.sh里的JAVA_HOME要改为本机的JAVA_HOME),还是有ssh本机的免密码登录。

安装配置启动hdfs服务器:

然后,下载hadoop安装包,这个包就包括了hdfs服务器和yarn服务器的执行文件和配置脚本。解压后,先配置 hdfs 服务器端,主要是两个配置文件:core-site.xml 和 hdfs-site.xml 这个site我估计就是服务器端配置的意思。我是用root用户配置和执行的:

单机搭建hadoop环境(包括hdfs、yarn、hive),大数据,hadoop,大数据,分布式

etc/hadoop/core-site.xml (这里9000是hfds服务器,监听端口号,这里要用自己的IP地址,如果用127.0.0.1,远程集群连不进来)

<configuration>
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://172.32.155.57:9000</value>
    </property>

</configuration>

etc/hadoop/hdfs-site.xml (dfs.namenode.name.dir 和 dfs.namenode.data.dir)是服务器上存储元数据和数据的目录。

<configuration>
    <property>
        <name>dfs.replication</name>
        <value>1</value>
    </property>

    <property>
        <name>dfs.namenode.name.dir</name>
        <value>/mnt/disk01/hadoop/dfs/name</value>
    </property>

    <property>
        <name>dfs.datanode.data.dir</name>
        <value>/mnt/disk01/hadoop/dfs/data</value>
    </property>

</configuration>

对上面配置的目录进行初始化/格式化:

 $ bin/hdfs namenode -format

执行sbin里的start-dfs.sh就可以启动hdfs文件系统服务器了,可以jps查看一下有哪些java进程:

单机搭建hadoop环境(包括hdfs、yarn、hive),大数据,hadoop,大数据,分布式

如果在本地(服务器上),执行

hdfs dfs -ls /

就可以查看hdfs上的文件了,还可以用其它命令操作hdfs:

hdfs dfs -mkdir /user/root
hdfs dfs -mkdir input

安装配置启动yarn服务器:

上面只是配置了hdfs服务器,要想跑hive或mapreduce,还需要配置和启动调度器:yarn

etcd/hadoop/mapred-site.xml 

<configuration>
   <property>
      <name>mapreduce.framework.name</name>
      <value>yarn</value>
   </property>

   <property>
        <name>mapreduce.application.classpath</name>
        <value>$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*:$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/*</value>
    </property>
</configuration>

etcd/hadoop/yarn-site.xml (这里 yarn.resourcemanager.hostname 要写自己的IP,yarn.nodemanager.env-whitelist 设置Container的能继承NodeManager的哪些环境变量)

<configuration>

<!-- Site specific YARN configuration properties -->

    <property>
      <name>yarn.resourcemanager.hostname</name>
      <value>172.32.155.57</value>
    </property>

   <property>
      <name>yarn.nodemanager.aux-services</name>
      <value>mapreduce_shuffle</value>
   </property>

    <property>
        <name>yarn.nodemanager.env-whitelist</name>
        <value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_HOME,PATH,LANG,TZ,HADOOP_MAPRED_HOME</value>
    </property>

</configuration>

MapReducer执行时,会在NodeManager上创建Container,在Container上执行Task(JAVA程序),该程序需要环境变量(如:JDK、HADOOP_MAPRED_HOME…),该参数就是 设置Container的能继承NodeManager的哪些环境变量。

-- 引自 

HADOOP_MAPRED_HOME=${full path of your hadoop distribution directory}-CSDN博客

启动yarn

start-yarn.sh
[root@neoap082 hadoop-3.3.6]# jps
430131 Jps
422691 ResourceManager
416862 NameNode
417388 SecondaryNameNode
422874 NodeManager
417082 DataNode

 执行 mapreduce 任务(java程序)

  $ bin/hdfs dfs -mkdir -p /user/root
  $ bin/hdfs dfs -mkdir input
  $ bin/hdfs dfs -put etc/hadoop/*.xml input
  $ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.6.jar grep input output 'dfs[a-z.]+'
  $ bin/hdfs dfs -cat output/*

安装配置启动hive:

hive的元数据一般使用mysql存储,也可以使用hive自带的数据库derby,如果使用derby,那么hive的安装、配置、启动非常简单:

先要单独下载hive:

单机搭建hadoop环境(包括hdfs、yarn、hive),大数据,hadoop,大数据,分布式

不需要修改任何hive的配置文件,就是最简情况下,只要配置好hdfs和yarn,不需要配置hive。

但是,第一次使用以前,需要初始化 hive:

hdfs dfs -mkdir -p /user/hive/warehouse
bin/schematool -dbType derby -initSchema

初始化的数据在metastore_db里,要重新初始化只要删除这个目录,再执行上面的命令即可,有些奇怪的问题可以这样解决。

然后直接执行 bin目录下的hive,这样就进入了hive命令行,也启动了hive服务器,这种只能用来学习测试,不过也足够了。

CREATE TABLE basic_data_textfile
(
    k00 INT,
    k01 DATE,
    k02 BOOLEAN,
    k03 TINYINT,
    k04 SMALLINT,
    k05 INT    ,
    k06 BIGINT ,
    k07 BIGINT,
    k08 FLOAT  ,
    k09 DOUBLE ,
    k10 DECIMAL(9,1) ,
    k11 DECIMAL(9,1) ,
    k12 TIMESTAMP,
    k13 DATE ,
    k14 TIMESTAMP,
    k15 CHAR(2),
    k16 STRING,
    k17 STRING ,
    k18 STRING   

row format delimited fields terminated by '\|' ;

# 从本地文件加载

load data local inpath '/opt/doris_2.0/basic_data.csv' into table basic_data;

# 从hdfs路径加载

load data inpath '/user/root/basic_data.csv' into table basic_data_lzo;

 hive表数据是一个hdfs目录下的文件,可以设置这些文件存储时的格式和压缩算法,例如,下面的basic_data_lzop表一lzo压缩,压缩文件格式为lzop:

set hive.exec.compress.output=true;
set mapred.output.compression.codec=com.hadoop.compression.lzo.LzopCodec;
set io.compression.codecs=com.hadoop.compression.lzo.LzopCodec;

CREATE TABLE basic_data_lzop
(
    k00 INT,
    k01 DATE,
    k02 BOOLEAN,
    k03 TINYINT,
    k04 SMALLINT,
    k05 INT    ,
    k06 BIGINT ,
    k07 BIGINT,
    k08 FLOAT  ,
    k09 DOUBLE ,
    k10 DECIMAL(9,1) ,
    k11 DECIMAL(9,1) ,
    k12 TIMESTAMP,
    k13 DATE ,
    k14 TIMESTAMP,
    k15 CHAR(2),
    k16 STRING,
    k17 STRING ,
    k18 STRING   

row format delimited fields terminated by '\|' ;

insert into basic_data_lzop select * from basic_data;

 basic_data_orc_snappy 表以orc格式存储,数据块以snappy压缩:

CREATE TABLE basic_data_orc_snappy
(
    k00 INT,
    k01 DATE,
    k02 BOOLEAN,
    k03 TINYINT,
    k04 SMALLINT,
    k05 INT    ,
    k06 BIGINT ,
    k07 BIGINT,
    k08 FLOAT  ,
    k09 DOUBLE ,
    k10 DECIMAL(9,1) ,
    k11 DECIMAL(9,1) ,
    k12 TIMESTAMP,
    k13 DATE ,
    k14 TIMESTAMP,
    k15 CHAR(2),
    k16 STRING,
    k17 STRING ,
    k18 STRING   

row format delimited fields terminated by '\|' 
stored as orc tblproperties ("orc.compress"="SNAPPY");

insert into basic_data_orc_snappy select * from basic_data_textfile;文章来源地址https://www.toymoban.com/news/detail-829092.html

到了这里,关于单机搭建hadoop环境(包括hdfs、yarn、hive)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 三台异构服务器搭建hadoop HA集群史上最详细方案(HDFS+YARN)

     一、系统基础服务配置 主机名 IP 操作系统 CPU 内存 磁盘 Hive01 10.86.102.104 Centos 7.9.2009 Xeon 4208 X16 192G 46T Hive02 10.86.102.102 Centos 7.9.2009 Xeon 4208 X16 192G 46T Hive03 10.86.102.105 Centos 7.9.2009 Xeon 8260 X48 256G         11T 最终组成的是一个双副本56T的集群,设置YARN内存共400GB(可调) 3台服务

    2024年02月07日
    浏览(56)
  • Spark单机伪分布式环境搭建、完全分布式环境搭建、Spark-on-yarn模式搭建

    搭建Spark需要先配置好scala环境。三种Spark环境搭建互不关联,都是从零开始搭建。 如果将文章中的配置文件修改内容复制粘贴的话,所有配置文件添加的内容后面的注释记得删除,可能会报错。保险一点删除最好。 上传安装包解压并重命名 rz上传 如果没有安装rz可以使用命

    2024年02月06日
    浏览(83)
  • 大数据环境搭建 Hadoop+Hive+Flume+Sqoop+Azkaban

    Hadoop:3.1.0 CentOS:7.6 JDK:1.8 这里网上教程很多,就不贴图了 【内存可以尽量大一些,不然Hive运行时内存不够】 创建tools目录,用于存放文件安装包 将Hadoop和JDK的安装包上传上去 创建server目录,存放解压后的文件 解压jdk 配置环境变量 配置免密登录 配置映射,配置ip地址和

    2024年02月09日
    浏览(43)
  • Hadoop——Windows系统下Hadoop单机环境搭建

    为了便于开发,我在本地Windows系统进行Hadoop搭建。 我使用的版本:hadoop-2.7.0。其他版本也可,搭建流程基本一样,所以参考这个教程一般不会有错。 1、下载安装包和插件 安装包hadoop-2.7.0.tar.gz 必要插件winutils-master 2、解压安装包 使用管理员身份运行cmd,到安装包对应目录下

    2024年02月09日
    浏览(52)
  • 【云计算平台】Hadoop单机模式环境搭建

    接上一篇博客 点我跳转到虚拟机搭建,配置好虚拟机环境后进行hadoop单机模式的部署,我的云计算课程中只要求了简单的单机模式部署,如果有精力的话,应该会把伪分布式部署也简单地记录一下 Apache Hadoop 项目为可靠,可扩展的分布式计算开发开源软件;Hadoop软件库是一个

    2024年02月02日
    浏览(49)
  • docker本地搭建spark yarn hive环境

    ​ 为了学习大数据处理相关技术,需要相关软件环境作为支撑实践的工具。而这些组件的部署相对繁琐,对于初学者来说不够友好。本人因为工作中涉及到该部分内容,通过参考网上的资料,经过几天摸索,实现了既简单又快捷的本地环境搭建方法。特写下该文章,加以记录

    2024年03月10日
    浏览(41)
  • HDFS 跨集群数据同步(hive,hadoop)

    两个不同的HDFS 集群数据迁移( A集群的数据 - B 集群) 采用的是 SHELL 脚本  按表进行; 日期分区进行; #!/bin/bash ##################### #创建人:DZH #创建日期: 2020-04 #内容: 数据迁移 ##################### ##################################### [ \\\"$#\\\" -ne 0 ] FILE=$1 path=$(cd `dirname $0`; pwd) ############## 获取执

    2024年04月27日
    浏览(58)
  • hadoop3.3.1单机版环境搭建详细流程记录

    安装vim即可; 按“o”进入编辑模式; 编辑完内容后,“esc”--“:”--\\\"wq\\\"--回车,执行保存并退出。 点\\\"i\\\"或者\\\"o\\\"进入编辑模式; 编辑完后,点\\\"Esc\\\"--\\\":\\\"--\\\"wq\\\",回车,保存退出。 生成公钥和私钥;(一直点下去即可) 授权是单向的; 8.1、方法一: 进入 ~/.ssh 目录下,查看生成

    2024年02月09日
    浏览(46)
  • 头歌Hadoop 开发环境搭建及HDFS初体验(第2关:配置开发环境 - Hadoop安装与伪分布式集群搭建)

    注: 1 头歌《Hadoop 开发环境搭建及HDFS初体验》三关在一个实验环境下,需要三关从前往后按顺序评测,跳关或者实验环境结束后重新打开 不能单独评测通过 2 复制粘贴请用右键粘贴,CTRL+C/V不管用哦~ 第1关:配置开发环境 - JavaJDK的配置: 解压: 配置环境变量: 细节: vi

    2024年02月08日
    浏览(213)
  • Hadoop——Hive运行环境搭建

    Windows:10         JDK:1.8         Apache Hadoop:2.7.0 Apache Hive:2.1.1         Apache Hive src:1.2.2         MySQL:5.7 1、下载 Hadoop搭建 Apache Hive 2.1.1:https://archive.apache.org/dist/hive/hive-2.1.1/apache-hive-2.1.1-bin.tar.gz Apache Hive 1.2.2 src:https://archive.apache.org/dist/hive/hive-1.2.2/apache-hive-1.

    2024年02月16日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包