大数据学习之Flink算子、了解(Transformation)转换算子(基础篇三)

这篇具有很好参考价值的文章主要介绍了大数据学习之Flink算子、了解(Transformation)转换算子(基础篇三)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Transformation转换算子(基础篇三)


目录

Transformation转换算子(基础篇三)

三、转换算子(Transformation)

1.基本转换算子

1.1 映射(Map)

1.2 过滤(filter)

1.3 扁平映射(flatmap)

1.4基本转换算子的例子

2.聚合算子(Aggregation)

2.1 按键分区(keyBy)

2.2 简单聚合

2.3 归约聚合(reduce)

3.用户自定义函数(UDF)

3.1 函数类(Function Classes)文章来源地址https://www.toymoban.com/news/detail-829110.html

到了这里,关于大数据学习之Flink算子、了解(Transformation)转换算子(基础篇三)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Flink-1.17-教程】-【四】Flink DataStream API(3)转换算子(Transformation)【用户自定义函数(UDF)】

    用户自定义函数( user-defined function , UDF ),即用户可以根据自身需求,重新实现算子的逻辑。 用户自定义函数分为: 函数类 、 匿名函数 、 富函数类 。 Flink 暴露了所有 UDF 函数的接口,具体实现方式为接口或者抽象类,例如 MapFunction 、 FilterFunction 、 ReduceFunction 等。所

    2024年01月23日
    浏览(49)
  • [flink 实时流基础]源算子和转换算子

    Flink可以从各种来源获取数据,然后构建DataStream进行转换处理。一般将数据的输入来源称为数据源(data source),而读取数据的算子就是源算子(source operator)。所以,source就是我们整个处理程序的输入端。 在Flink1.12以前,旧的添加source的方式,是调用执行环境的addSource()方

    2024年04月11日
    浏览(44)
  • flink重温笔记(三):Flink 流批一体 API 开发——Transformation 重要算子操作

    前言:今天是学习 flink 第三天啦,学习了高级 api 开发中11 中重要算子,查找了好多资料理解其中的原理,以及敲了好几个小时代码抓紧理解原理。 Tips:虽然学习进度有点慢,希望自己继续努力,不断猜想 api 原理,通过敲代码不断印证自己的想法,转码大数据之路一定会越

    2024年02月19日
    浏览(44)
  • 大数据学习之Flink,10分钟带你初步了解Flink

    目录 前摘 一、认识Flink的Logo​编辑 二、了解Flink的起源 三、了解Flink的发展 四、明白Flink的定位 五、Flink主要的应用场景 六、流式数据处理的发展和演变 1. 流处理和批处理 2. 传统事务处理 2.1传统事务处理架构​编辑 3. 有状态的流处理 4. Lambda 架构 5. 新一代流处理器 七、

    2024年02月20日
    浏览(46)
  • 大数据学习之Flink、10分钟了解Flink的核心组件以及它们的工作原理

     第一章、Flink的容错机制 第二章、Flink核心组件和工作原理 第三章、Flink的恢复策略 第四章、Flink容错机制的注意事项 第五章、Flink的容错机制与其他框架的容错机制相比较 目录 第二章、Flink核心组件和工作原理 Ⅰ、核心组件 1. Checkpoint组件: 2. Savepoint组件: 3. Barrier组件

    2024年01月23日
    浏览(40)
  • Flink源算子、转换算子和输出算子(DataSet)

    Flink是一种一站式处理的框架,既可以进行批处理(DataSet),也可以进行流处理(DataStream) 将Flink的算子分为两大类:DataSet 和 DataStream 1.1 fromCollection 从本地集合读取数据 1.2 readTextFile 从文件中读取 1.3 readTextFile 遍历目录 对一个文件目录内的所有文件,包括所有子目录中的

    2024年04月23日
    浏览(38)
  • Spark中RDD的Transformation算子

    map算子的功能为做映射,即将原来的RDD中对应的每一个元素,应用外部传入的函数进行运算,返回一个新的RDD flatMap算子的功能为扁平化映射,即将原来RDD中对应的每一个元素应用外部的运算逻辑进行运算,然后再将返回的数据进行压平,类似先map,然后再flatten的操作,最后

    2024年02月11日
    浏览(40)
  • Halcon 3D-Transformation 相关算子(一)

    (1) hom_mat3d_identity( : : : HomMat3DIdentity) 功能:生成三维齐次变换矩阵。 控制输出参数:HomMat3DIdentity:变换矩阵。 (2) create_pose( : : TransX, TransY, TransZ, RotX, RotY, RotZ, OrderOfTransform, OrderOfRotation, ViewOfTransform : Pose) 功能:创建一个3D位姿。 控制输入参数1:(TransX, TransY, TransZ):分别表示

    2024年01月20日
    浏览(42)
  • Flink基础概念-算子

    Flink的核心目标,是\\\"数据流上的有状态计算\\\"。 具体说明:ApacheFlink是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。 无界数据流 例如从Kafka这样的消息组件中读取的数据一般,没有数据流结束的定义,即使没有数据也在进行消费。 有界数据流 有界数据

    2024年02月03日
    浏览(44)
  • Flink核心API之DataStream(基础常用算子)

    (一)Flink核心API Flink中提供了4种不同层次的API,每种API在简洁和易表达之间有自己的权衡,适用于不同的场景。目前上面3个会用得比较多。 低级API(Stateful Stream Processing):提供了对时间和状态的细粒度控制,简洁性和易用性较差, 主要应用在一些复杂事件处理逻辑上。 核心

    2024年01月22日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包