毕业设计 stm32 wifi远程温控风扇系统

这篇具有很好参考价值的文章主要介绍了毕业设计 stm32 wifi远程温控风扇系统。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


0 前言

🔥
这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 毕业设计 stm32 wifi远程温控风扇系统

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 项目分享:见文末!文章来源地址https://www.toymoban.com/news/detail-829122.html

毕业设计 stm32 wifi远程温控风扇系统,单片机

实物演示效果

毕业设计 stm32 wifi远程温控风扇系统 - 单片机 嵌入式 物联网

1 主要功能

按照时间规划和目标进度完成开发基于STM32远程智能降温系统的电路设计、程序设计、程序调试、软硬结合调试,从而实现风扇降温系统的自动智能模式和远程手动模式。

(1)自动智能模式
自动智能模式可根据设备的温湿度传感器进行时实数据检测,进行自动反馈达到自动开启风扇降温。

(2)远程手动模式
在自动智能模式中无法满足降温特殊需求情况,可根据特殊需求切换远程手动模式,在开发已有的客户端上发送降温命令,从而实现根据特殊需求情况降温的远程手动模式。

2 系统架构

(1)空气温湿度传感器

DHT11 是一款湿温度一体化的数字传感器。该传感器包括一个电阻式测湿元件和一个 NTC测温元件,并与一个高性能 8 位单片机相连接。通过单片机等微处理器简单的电路连接就能够实时的采集本地湿度和温度。DHT11 与单片机之间能采用简单的单总线进行通信,仅仅需要一个 I/O 口。传感器内部湿度和温度数据 40Bit 的数据一次性传给单片机,数据采用校验和方式进行校验,有效的保证数据传输的准确性。DHT11 功耗很低,5V 电源电压下,工作平均最大电流 0.5mA。

(2)光照强度传感器
光照强度的监测采用的是bh1750光照强度传感器。有接近视觉灵敏度的光谱灵敏度特性,支持I2CBUS接口,支持1.8v逻辑输入接口。传感器有两种可选的I2Cslave地址,无需其他外部件。光源依赖性弱,受红外线影响很小。传感器通过降低功率功能,实现低电流化。通过50Hz/60Hz除光噪音功能实现稳定的测定,最小误差变动在±20%。

(3)WiFi通信模块
ESP8266是一款高性能的无线 WIFI模块。ESP8266 模块采用串口(LVTTL)与 MCU(或其他串口设备)通信,内置 TCP/IP协议栈,能够实现串口与 WIFI 之间的转换。通过ESP8266模块,传统的串口设备只是需要简单的串口配置,即可通过网络(WIFI)传输自己的数据。
ATK-ESP8266 模块支持 LVTTL 串口,兼容 3.3V 和 5V 单片机系统,可以很方便的与你的产品进行连接。模块支持串口转 WIFI STA、串口转 AP 和 WIFI STA+WIFI AP 的模式,从而快速构建串口-WIFI 数据传输方案。

毕业设计 stm32 wifi远程温控风扇系统,单片机

使用到的硬件器件

  • STM32F103RCT6开发板 * 1
  • DHT11温湿度传感器 * 1
  • 继电器模块 * 1
  • Wifi - ESP01S * 1
  • 1.44寸液晶屏(SPI接口) * 1
  • 小风扇模块 * 1
  • 杜邦线若干

3 核心软件设计

控制系统软件使用 C 语言编程。

使用模块化设计, 除主程序外, 还有各功能子程序, 分别执行直流电机驱动调速及温度采集、 显示等功能, 编辑环境采用集成开发环环境 Keil。

程序总体运行流程图如下:

毕业设计 stm32 wifi远程温控风扇系统,单片机

3.3.2 初始化

系统初始化包括 STM32 系统定时器初始化, GPIO 口初始化以及 LCD1602 初始化等。

毕业设计 stm32 wifi远程温控风扇系统,单片机

3.3.3 温度采集与显示

DS18B20 温度传感器进行温度采集时, 要依次进行初始化, ROM 操作指令, 存储器操作指令, 数据传输等操作

毕业设计 stm32 wifi远程温控风扇系统,单片机

篇幅有限,不过多复述详细设计细节,详细的设计分享在论文中。。。

关键代码

#include "stm32f10x.h"
#include "bsp_SysTick.h"
#include <LCD1602.h>
#include "bsp_ds18b20.h"
int main()
{ int PWM,low,zhouqi;
float wendu;
 int wendu1;
 zhouqi=500;
 low=zhouqi-PWM;
 SysTick_Init();
 init1602();
lcdpos(1,0);
writestring("TEM: 00.0");
 GPIO_SetBits(GPIOB,GPIO_Pin_0);
while( DS18B20_Init()) 
 {
lcdpos(0,0);
 writestring(" no ds18b20 exit");
}
 lcdpos(0,0);
 writestring("ds18b20 exit");
 for(;;)
 {
DS18B20_Get_Temp(wendu);
 if (wendu<0)
 { lcdpos(1,4);
 writestring("-");
}
  wendu1=wendu*100;
 lcdpos(1,5);
 write_dat(wendu1/10000+0x30);
lcdpos(1,6);
  write_dat(wendu1%10000/1000+0x30);
  lcdpos(1,7);
  write_dat(wendu1%1000/100+0x30);
  lcdpos(1,9);
  write_dat(wendu1%100/10+0x30);
  lcdpos(1,10);
write_dat(wendu1%10+0x30);
  Delay_ms(2000);
 if(wendu1>30)
 { low=500;
 GPIO_SetBits(GPIOB,GPIO_Pin_0);
Delay_ms(PWM);
}  
 if(wendu1<15)
 { low=0;
  GPIO_SetBits(GPIOB,GPIO_Pin_0);
  Delay_ms(PWM);
}
 if(wendu1>=15&wendu1<20)
 { low=100;
GPIO_SetBits(GPIOB,GPIO_Pin_0);
 Delay_ms(PWM);
 GPIO_ResetBits(GPIOB,GPIO_Pin_0);
  Delay_ms(low);
} 
  if(wendu1>=20&wendu1<25)
  {
low=200;
  GPIO_SetBits(GPIOB,GPIO_Pin_0);
  Delay_ms(PWM);
  GPIO_ResetBits(GPIOB,GPIO_Pin_0);
  Delay_ms(low);
  }
 if(wendu1>=25&wendu1<30)
 { low=300;
GPIO_SetBits(GPIOB,GPIO_Pin_0);
  Delay_ms(PWM);
  GPIO_ResetBits(GPIOB,GPIO_Pin_0);
  Delay_ms(low);
}
 }
}
2.DS18B20 子程序
#include "bsp_ds18b20.h"
/*
* 函数名: DS18B20_GPIO_Config
* 描述 : 配置 DS18B20 用到的 I/O 口
* 输入 : 无
* 输出 : 无
*/
static void DS18B20_GPIO_Config(void)
{ 
/*定义一个 GPIO_InitTypeDef类型的结构体*/
GPIO_InitTypeDef GPIO_InitStructure;
/*开启 DS18B20_PORT 的外设时钟*/
RCC_APB2PeriphClockCmd(DS18B20_CLK, ENABLE);
/*选择要控制的 DS18B20_PORT 引脚*/
GPIO_InitStructure.GPIO_Pin = DS18B20_PIN;
/*设置引脚模式为通用推挽输出*/
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
/*设置引脚速率为 50MHz */
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
/*调用库函数, 初始化 DS18B20_PORT*/
GPIO_Init(DS18B20_PORT, &GPIO_InitStructure);
GPIO_SetBits(DS18B20_PORT, DS18B20_PIN);
}
/*
* 函数名: DS18B20_Mode_IPU
* 描述 : 使 DS18B20-DATA 引脚变为输入模式
* 输入 : 无
* 输出 : 无
*/
static void DS18B20_Mode_IPU(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
/*选择要控制的 DS18B20_PORT 引脚*/
GPIO_InitStructure.GPIO_Pin = DS18B20_PIN;
/*设置引脚模式为浮空输入模式*/
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
/*调用库函数, 初始化 DS18B20_PORT*/
GPIO_Init(DS18B20_PORT, &GPIO_InitStructure);
}
/*
* 函数名: DS18B20_Mode_Out_PP
* 描述 : 使 DS18B20-DATA 引脚变为输出模式
* 输入 : 无
* 输出 : 无
*/
static void DS18B20_Mode_Out_PP(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
/*选择要控制的 DS18B20_PORT 引脚*/
GPIO_InitStructure.GPIO_Pin = DS18B20_PIN;
/*设置引脚模式为通用推挽输出*/
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
/*设置引脚速率为 50MHz */
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
/*调用库函数, 初始化 DS18B20_PORT*/
GPIO_Init(DS18B20_PORT, &GPIO_InitStructure);
}
/*
*主机给从机发送复位脉冲
*/
static void DS18B20_Rst(void)
{
/* 主机设置为推挽输出 */
DS18B20_Mode_Out_PP();
DS18B20_DATA_OUT(LOW);
/* 主机至少产生 480us 的低电平复位信号 */
Delay_us(750);
/* 主机在产生复位信号后, 需将总线拉高 */
DS18B20_DATA_OUT(HIGH);
Delay_us(15);
}
/*
* 检测从机给主机返回的存在脉冲
* 0: 成功
* 1: 失败
*/
static uint8_t DS18B20_Presence(void)
{
uint8_t pulse_time = 0;
/* 主机设置为上拉输入 */
DS18B20_Mode_IPU();
while( DS18B20_DATA_IN() && pulse_time<100 )
{
pulse_time++;
Delay_us(1);
} 
/ * 经过 100us 后, 存在脉冲都还没有到来*/
if( pulse_time >=100 )
return 1;
else
pulse_time = 0;

/* 存在脉冲到来, 且存在的时间不能超过 240us */
while( !DS18B20_DATA_IN() && pulse_time<240 )
{
pulse_time++;
Delay_us(1);
} 
if( pulse_time >=240 )
return 1;
else
return 0;
}
/*
* 从 DS18B20 读取一个 bit
*/
static uint8_t DS18B20_Read_Bit(void)
{
uint8_t dat; /* 读 0 和读 1 的时间至少要大于 60us */
DS18B20_Mode_Out_PP();
/* 读时间的起始: 必须由主机产生 >1us <15us 的低电平信号 */
DS18B20_DATA_OUT(LOW);
Delay_us(10);
/ * 设置成输入, 释放总线, 由外部上拉电阻将总线拉高 */
DS18B20_Mode_IPU();
//Delay_us(2);
if( DS18B20_DATA_IN() == SET )
dat = 1;
else
dat = 0;
/* 这个延时参数请参考时序图 */
Delay_us(45);
return dat;
}
/*
* 从 DS18B20 读一个字节, 低位先行
*/
uint8_t DS18B20_Read_Byte(void)
{
uint8_t i, j, dat = 0;
for(i=0; i<8; i++)
{
j = DS18B20_Read_Bit();
dat = (dat) | (j<<i);
}
return dat;
}
/*
* 写一个字节到 DS18B20, 低位先行
*/
void DS18B20_Write_Byte(uint8_t dat)
{
uint8_t i, testb;
DS18B20_Mode_Out_PP();
for( i=0; i<8; i++ )
{
testb = dat&0x01;
dat = dat>>1; 
/* 写 0 和写 1 的时间至少要大于 60us */
if (testb)
{  
DS18B20_DATA_OUT(LOW);
/* 1us < 这个延时 < 15us */
Delay_us(8);
DS18B20_DATA_OUT(HIGH);
Delay_us(58);
} 
else
{  
DS18B20_DATA_OUT(LOW);
/* 60us < Tx 0 < 120us */
Delay_us(70);
DS18B20_DATA_OUT(HIGH);  
/* 1us < Trec(恢复时间) < 无穷大*/
Delay_us(2);
}
}
}
void DS18B20_Start(void)
{
DS18B20_Rst(); 
DS18B20_Presence();
DS18B20_Write_Byte(0XCC);  /* 跳过 ROM */
DS18B20_Write_Byte(0X44);  /* 开始转换 */
}
uint8_t DS18B20_Init(void)
{
DS18B20_GPIO_Config();
DS18B20_Rst();
return DS18B20_Presence();
}
float DS18B20_Get_Temp(float f_tem)
{
uint8_t tpmsb, tplsb;
short s_tem;
DS18B20_Rst(); 
DS18B20_Presence();
DS18B20_Write_Byte(0XCC); /* 跳过 ROM */
DS18B20_Write_Byte(0X44);    /* 开始转换 */
DS18B20_Rst();
DS18B20_Presence();
DS18B20_Write_Byte(0XCC);    /* 跳过 ROM */
DS18B20_Write_Byte(0XBE);    /* 读温度值 */
tplsb = DS18B20_Read_Byte(); 
tpmsb = DS18B20_Read_Byte();
s_tem = tpmsb<<8;
s_tem = s_tem | tplsb;
I f( s_tem < 0 )  /* 负温度 */
f_tem = (~s_tem+1) * 0.0625;
else
f_tem = s_tem * 0.0625;
return f_tem;
}

/*******************************************************************
篇幅有限,只展示部分代码
********************************************************************/

4 实现效果

毕业设计 stm32 wifi远程温控风扇系统,单片机

演示视频

毕业设计 stm32 wifi远程温控风扇系统 - 单片机 嵌入式 物联网

5 最后

包含内容

毕业设计 stm32 wifi远程温控风扇系统,单片机

🧿 项目分享:见文末!

到了这里,关于毕业设计 stm32 wifi远程温控风扇系统的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 毕业设计 stm32 wifi远程可视化与农业灌溉系统(源码+硬件+论文)

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年03月15日
    浏览(70)
  • 【毕业设计】基于单片机的智能温控农业大棚系统 - 物联网 stm32

    Hi,大家好,这里是丹成学长,今天向大家介绍一个 单片机项目 基于单片机的智能温控农业大棚系统 大家可用于 课程设计 或 毕业设计 单片机-嵌入式毕设选题大全及项目分享: https://blog.csdn.net/m0_71572576/article/details/125409052 近年来我国的温室控制取得了 长足的进步, 首先在

    2024年02月02日
    浏览(37)
  • 【毕业设计】STM32电风扇智能调速器的设计【硬件+原理图+实物+论文】

    题目: STM32电风扇智能调速器的设计 摘 要 本设计为一种温控风扇系统,具有灵敏的温度感测和显示功能,系统STM32单片机作为控制平台对风扇转速进行控制。可由用户设置高、低温度值,测得温度值在高低温度之间时打开风扇弱风档,当温度升高超过所设定的温度时自动切

    2024年02月08日
    浏览(39)
  • STM32毕业设计——基于STM32+MQTT+WiFi技术的智能家居系统设计与实现(毕业论文+程序源码)——智能家居系统

    大家好,今天给大家介绍基于STM32+MQTT+WiFi技术的智能家居系统设计与实现,文章末尾附有本毕业设计的论文和源码下载地址哦。需要下载开题报告PPT模板及论文答辩PPT模板等的小伙伴,可以进入我的博客主页查看左侧最下面栏目中的自助下载方法哦 文章目录: 智能家居技术

    2024年02月10日
    浏览(53)
  • 毕业设计 基于STM32与wifi的天气预报网时钟系统 - 物联网 单片机

    文章目录 0 前言 1 设计内容 2 软件设计 3 关键代码 4 最后 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及

    2024年02月06日
    浏览(51)
  • 物联网毕业设计 STM32的wifi照明控制系统 - 智能路灯(物联网毕设分享)

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年01月18日
    浏览(34)
  • 【物联网毕业设计】 单片机WIFI智能家居温湿度与烟雾检测系统 - Stm32 嵌入式

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2023年04月21日
    浏览(41)
  • 毕业设计——基于STM32的智能家具控制系统(ESP-01S(8266)、手机app远程控制、远程显示温度)

    智能家具系统分为两个不同版本系列: ①系列一:手机app远程控制、远程检测温湿度显示在app,(云平台)    ---------本文章 ②系列二:语音识别控制                https://blog.csdn.net/m0_59113542/article/details/123742383 步进电机及相关驱动 步进电机28BYJ48 uln2003驱动板器4相5线

    2023年04月09日
    浏览(35)
  • STM32学习-基于STM32F1具有控制菜单的温控小风扇

    本文仅作个人学习记录,非教程,内容不完整,仅供参考,请勿用于商业用途。 使用ADC读取环境温度,根据环境温度设置PWM占空比,从而控制FAN转速。控制菜单功能:1.设置特定转速,2.切换为手动模式任意控制FAN转速。 整个系统并不复杂:MCU负责运行代码并输出信号;NTC是

    2024年02月06日
    浏览(228)
  • STM32 Proteus仿真红外检测PWM调速温控风扇-0073

    STM32 Proteus仿真红外检测PWM调速温控风扇-0073 Proteus 仿真小实验: STM32 Proteus仿真红外检测PWM调速温控风扇-0073 功能: 硬件组成:STM32F103C6单片机 +LCD1602显示器+DS18B20温度传感器+人检测 按下说明有人+L298驱动电机模拟风扇 1.按键模拟人体红外探测,一旦检测到人后,开始自动

    2024年02月16日
    浏览(29)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包