多维时序 | Matlab实现LSTM-Mutilhead-Attention长短期记忆神经网络融合多头注意力机制多变量时间序列预测模型
预测效果
基本介绍
1.Matlab实现LSTM-Mutilhead-Attention长短期记忆神经网络融合多头注意力机制多变量时间序列预测模型(完整源码和数据)
2.运行环境Matlab2023及以上,excel数据集,多列输入,单列输出,方便替换数据,考虑历史特征的影响;
3.多指标评价,评价指标包括:R2、MAE、MAPE、MSE等,代码质量极高。文章来源:https://www.toymoban.com/news/detail-829309.html
程序设计
- 完整程序和数据获取方式资源处下载Matlab实现LSTM-Mutilhead-Attention长短期记忆神经网络融合多头注意力机制多变量时间序列预测模型。
clc;clear;close all;format compact
tic
clc
clear all
options = trainingOptions('adam', ... % 优化算法Adam
'MaxEpochs', 70, ... % 最大训练次数
'GradientThreshold', 1, ... % 梯度阈值
'InitialLearnRate', 0.01, ... % 初始学习率
'LearnRateSchedule', 'piecewise', ... % 学习率调整
'LearnRateDropPeriod', 60, ... % 训练850次后开始调整学习率
'LearnRateDropFactor',0.2, ... % 学习率调整因子
'L2Regularization', 0.01, ... % 正则化参数
'ExecutionEnvironment', 'cpu',... % 训练环境
'Verbose', 0, ... % 关闭优化过程
'Plots', 'training-progress'); % 画出曲线
参考资料
[1] https://blog.csdn.net/kjm13182345320/category_11799242.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/kjm13182345320/article/details/124571691文章来源地址https://www.toymoban.com/news/detail-829309.html
到了这里,关于多维时序 | Matlab实现LSTM-Mutilhead-Attention长短期记忆神经网络融合多头注意力机制多变量时间序列预测模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!