神经网络中的前向传播(Forward Propagation)和后向传播(Backward Propagation)

这篇具有很好参考价值的文章主要介绍了神经网络中的前向传播(Forward Propagation)和后向传播(Backward Propagation)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

有时候会搞混这两个概念。什么是前向传播?不是只有后向传播吗?后向传播好像是用来更新模型参数的,前向传播是什么东西?
带着疑问再次梳理一遍:

前向传播

前向传播是神经网络进行预测的过程。在这个过程中,输入数据沿着神经网络从输入层经过隐藏层(如果有的话)最终到输出层流动。在每一层,数据会与层内的权重(parameters)进行计算(如加权和),并通过激活函数(activation function)进行非线性转换,生成该层的输出。这个输出随后成为下一层的输入,直到最后生成最终的预测结果。前向传播的目的是根据当前的模型参数(权重和偏置)对输入数据进行预测

后向传播

后向传播是训练神经网络时用于计算损失函数(loss function)关于模型参数的梯度(gradient)的过程。这个过程始于最终输出层的损失函数,此函数衡量了模型预测和实际标签之间的差异。在后向传播中,这个损失会被用来计算对每个参数的梯度,表示损失函数如何随这些参数的变化而变化。这通过链式法则(chain rule)实现,从输出层开始逐层向后计算梯度,直至输入层。计算得到的梯度随后用于更新模型的参数(如通过梯度下降法),目的是减少损失,从而改善模型的预测性能。

关系
前向传播提供了模型对当前输入的预测,这个预测随后用于计算损失,损失反映了模型当前性能的好坏。
后向传播利用这个损失,通过计算损失相对于每个参数的梯度,来指导模型参数的更新,以减少未来的预测误差。

前向传播是数据输入到网络模型得到预测结果的过程,后向传播是计算loss function计算模型参数梯度的过程。

引申概念:梯度。
什么是梯度?我们知道模型是根据目标函数的梯度反方向更新参数的,那么这个重要的梯度是如何计算和得到的?梯度的计算通常依赖于链式法则,它是微积分中的一个基本原则,用于计算复合函数的导数。在深度学习中,模型的输出和损失可以视为输入数据和模型参数的复合函数,链式法则允许我们分步骤计算损失相对于每个参数的偏导数。文章来源地址https://www.toymoban.com/news/detail-829919.html

到了这里,关于神经网络中的前向传播(Forward Propagation)和后向传播(Backward Propagation)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 0基础入门---第3章---神经网络(前向传播)

    🌞欢迎来到深度学习的世界  🌈博客主页:卿云阁 💌欢迎关注🎉点赞👍收藏⭐️留言📝 🌟本文由卿云阁原创! 🙏作者水平很有限,如果发现错误,请留言轰炸哦!万分感谢! 目录 3.1 从感知机到神经网络 3.2 激活函数 3.3 多维数组的运算 3.4 3层神经网络的实现 3.5 输出

    2024年02月09日
    浏览(49)
  • 神经网络中,前向传播、反向传播、梯度下降和参数更新是怎么完成的

    神经网络中,前向传播、反向传播、梯度下降和参数更新是怎么完成的 在神经网络的训练过程中,前向传播、反向传播、梯度下降和参数更新是按照以下顺序完成的: 前向传播(Forward Propagation): 在前向传播阶段,输入样本通过神经网络的各个层,从输入层到输出层逐步进

    2024年02月16日
    浏览(41)
  • 【机器学习300问】71、神经网络中前向传播和反向传播是什么?

            我之前写了一篇有关计算图如何帮助人们理解反向传播的文章,那为什么我还要写这篇文章呢?是因为我又学习了一个新的方法来可视化前向传播和反向传播,我想把两种方法总结在一起,方便我自己后续的复习。对了顺便附上往期文章的链接方便回顾: 【机器

    2024年04月17日
    浏览(63)
  • 【人工智能】— 神经网络、前向传播、反向传播、梯度下降、局部最小值、多层前馈网络、缓解过拟合的策略

    前向传播和反向传播 都是神经网络训练中常用的重要算法。 前向传播 是指将输入数据从输入层开始经过一系列的权重矩阵和激活函数的计算后,最终得到输出结果的过程。在前向传播中,神经网络会将每一层的输出作为下一层的输入,直到输出层得到最终的结果。 反向传播

    2024年02月10日
    浏览(48)
  • 【人工智能】神经网络、前向传播、反向传播、梯度下降、局部最小值、多层前馈网络、缓解过拟合的策略

    前向传播 是指将输入数据从输入层开始经过一系列的权重矩阵和激活函数的计算后,最终得到输出结果的过程。在前向传播中,神经网络会将每一层的输出作为下一层的输入,直到输出层得到最终的结果。 反向传播 是指在神经网络训练过程中,通过计算损失函数的梯度,将

    2024年02月16日
    浏览(41)
  • 【机器学习】P18 反向传播(导数、微积分、链式法则、前向传播、后向传播流程、神经网络)

    反向传播(back propagation)是一种用于训练神经网络的算法,其作用是计算神经网络中每个参数对损失函数的影响,从而进行参数更新,使得神经网络的预测结果更加准确。 具体来说,反向传播算法首先通过 前向传播 计算神经网络的预测结果,并与实际结果进行比较,得到

    2024年02月04日
    浏览(58)
  • 神经网络中的反向传播:综合指南

    塔曼纳·         反向传播是人工神经网络 (ANN) 中用于训练深度学习模型的流行算法。它是一种监督学

    2024年02月07日
    浏览(44)
  • 每天五分钟计算机视觉:单卷积层的前向传播过程

    一张图片(输入)经过多个卷积核卷积就会得到一个输出,而这多个卷积核的组合就是一个单卷积层。 这些卷积核可能大小是不一样的,但是他们接收同样大小是输入,他们的输出必须是一般大小,所以不同的卷积核需要具备不同的步长和填充值。 单卷积层的前向传播和传

    2024年02月16日
    浏览(45)
  • 聊聊 神经网络模型 传播计算逻辑

    预训练过程就是在不断地更新权重超参数与偏置超参数,最后选择合适的超参数,生成超参数文件。上一篇博客 是使用已有的预训练超参数文件,要训练自己的超参数,需要对神经网络层中前向传播与反向传播计算熟悉,了解计算逻辑,才能不断地更新选择合适的超参数。

    2024年02月05日
    浏览(42)
  • 机器学习17:训练神经网络-反向传播算法

    反向传播算法对于快速训练大型神经网络至关重要。本文将介绍算法的工作原理。 目录 1.简单的神经网络 2.激活函数 3.错误函数 4.正向传播 4.1 更新隐藏层 5.反向传播 5.1 求导数

    2024年02月12日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包