深度学习:数据驱动的人工智能革命

这篇具有很好参考价值的文章主要介绍了深度学习:数据驱动的人工智能革命。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

每日一句正能量

一般青年的任务,尤其是共产主义青年团及其他一切组织的任务,可以用一句话来表示,就是要学习。

前言

深度学习的崛起标志着人工智能领域迈出了重要的一步,同时也为各行各业带来了巨大的机遇和挑战。通过模拟人类大脑的学习过程,深度学习能够自动提取特征、识别模式,并在多个领域实现了突破性的进展。特别是在自然语言处理、计算机视觉、语音识别和机器翻译等方面,深度学习已经成为重要的工具和技术。随着算法和模型的不断改进,计算能力的提升以及数据量的增长,深度学习的应用范围将会进一步扩大,对各行各业产生更为深远的影响。因此,了解和掌握深度学习的原理和应用成为了当今科技发展的重要课题。

什么是深度学习

深度学习是机器学习中的一个重要分支,它是一种复杂且强大的机器学习算法,旨在模仿人脑的工作机制,从而在多个领域如语音识别、图像识别、自然语言处理等取得显著效果。深度学习的核心在于人工神经网络(ANN),这是一种模仿生物神经系统结构的计算模型。

  • 人工神经网络:深度学习依赖于人工神经网络,这些网络可以有多层结构,每一层都会接收输入并生成不同的输出。这种层级化的处理方式允许网络捕捉和学习数据的复杂结构和模式。

  • 深层结构:深度学习中的“深度”通常指代神经网络中的隐藏层数量。这些隐藏层有助于网络学习更高层次的抽象信息,从而提高其识别能力和泛化能力。

  • 非线性激活:在深度学习中,神经元通过非线性激活函数来转换输入信号,这样可以在网络中传递信息的路径上增加多样性。

  • 特征学习与提取:深度学习采用非监督式或半监督式的特征学习和分层特征提取高效算法,这些方法允许网络自动从原始数据中发现和学习有用的特征。

  • 广泛应用:深度学习不仅限于机器学习,它在搜索技术、数据挖掘、机器翻译等多个领域都有所应用,并且已经在语音、图像识别等领域取得了超越传统技术的成果。

综上所述

深度学习是机器学习的一个子集,它利用人工神经网络的多层结构来模仿人脑的工作机制,通过对数据进行高层次的特征学习,实现了对复杂模式的有效识别和处理。

推动AI发展不同阶段的“三大驱动 ”

在AI发展的不同阶段,驱动力各有侧重,我们可以将AI的发展划分为三个阶段:

  • 技术驱动阶段
  • 数据驱动阶段
  • 场景驱动阶段。
    数据驱动的人工智能,个人总结与成长规划,人工智能,深度学习

1、技术驱动:算法和计算力是主要驱动力

技术驱动阶段集中诞生了基础理论、基本规则和基本开发工具。在此阶段,算法和计算力对AI的发展起到主要推动作用。现在主流应用的基于多层网络神经的深度算法,一方面不断加强从海量数据库中自行归纳物体特征的能力,一方面不断加强对新事物多层特征提取、描述和还原的能力。对算法来说,归纳和演绎同样重要,最终目的是提高识别效率。最新ImageNet测试结果显示,AI错误率低达3.5%,而人类对同一数据库识别错误率在5.1%理想情况下,计算机图像识别能力已超越人类。
数据驱动的人工智能,个人总结与成长规划,人工智能,深度学习

2、计算力的三驾马车:芯片、超级计算机、云计算

提高识别效率除依靠算法之外,也离不开计算力的支持。计算力可以分三个维度展开:芯片、超级计算机、云计算。

  1. 芯片:人工智能领域作为一个数据密集的领域,传统的数据处理技术难以满足高强度并行数据的处理需求。为解决此问题,继CPU之后,相继出现了GPU、NPU、FPGA、DSP等“AI”芯片。1999 年,Nvidia公司发布了全球首款图片处理芯片GPU;2016年,寒武纪发布了全球首款深度学习专用处理器芯片NPU,芯片的更迭、进步可从根本上提高计算性能
    数据驱动的人工智能,个人总结与成长规划,人工智能,深度学习
  2. 超级计算机:其基本组成组件与个人电脑的概念无太大差异,但规格与性能则强大许多,是一种超大型电子计算机。我国自主超级计算机“神威·∙太湖之光”,其处理器为众核CPU“申威26010”,整台“神威·∙太湖之光”共包含40960块处理器;打败李世石的AlphaGo共包含1202个CPU和176个GPU;打败柯洁的升级版AlphaGo使用到了TPU,但数量只有4 颗,可以发现,真正用于人工智能的超级计算机芯片还只是处于CPU、GPU层,如何将更适用于网络神经算法的NPU、FPGA等芯片量产化并融合入超级计算机芯片矩阵,是在人工智能发展的第一阶段—技术驱动阶段应该重点努力的方向之一。
    数据驱动的人工智能,个人总结与成长规划,人工智能,深度学习
  3. 云计算:与主要应用于密集型计算的超级计算机不同,云计算依靠其灵活的扩展能力主要应用于社交网络、企业IT建设和信息化等数据密集型、I/O密集型的领域。

我们分析认为,当AI跨越入第二阶段—数据驱动阶段后,算法和计算力将变成人工智能领域的基础设施—“水、电、煤”。就目前看来,多项算法开源平台已将AI算法引入统一、公用阶段,运算力也必将向同样的趋势发展。云计算则是一个初步尝试,未来,计算力的发展方向或将是云计算和超级计算机技术结合,为企业提供既可密集运算又可灵活扩展的计算服务,将人工智能赋能全行业。

3、数据驱动:描绘个性化画像;

场景驱动:给予决策支持

人工智能发展的第二个阶段,算法和计算力已基本不存在壁垒,数据将成为主要驱动力,推动人工智能更迭。此阶段,大量结构化、可靠的数据被采集、清洗和积累,甚至变现。例如,大量的数据基础上可以精确地描绘消费者画像,制定个性化营销方案,提高成单率,缩短达到预设目标的时间,推动社会运行效率提升。

到了人工智能发展的第三个阶段,场景驱动作为主要驱动力,不仅可以针对不同用户做个性化服务,而且可在不同的场景下执行不同的决策。此阶段,对数据收集的维度和质量的要求更高,并且可实时根据不同的场景,制定不同的决策方案,推动事件向良好的态势发展,帮助决策者更敏锐的洞悉事件根本,产生更精准更智慧的决策。
数据驱动的人工智能,个人总结与成长规划,人工智能,深度学习

后记

深度学习的快速发展引发了人工智能领域的革命,其对各行各业的影响愈发显著。通过模拟人脑的学习过程,深度学习能够在海量数据的驱动下,自动从中提取特征、识别模式,并实现精确的分类和预测。在自然语言处理、计算机视觉、语音识别和机器翻译等领域,深度学习已经取得了一系列突破,大大提升了人工智能技术的性能和应用潜力。

然而,深度学习的进展并非孤立于其他因素。算法和模型的不断改进、计算能力的提升以及海量数据的积累,都为深度学习的发展提供了有力支撑。同时,深度学习的应用也要面对一些挑战,如模型的训练时间和资源消耗较高、对大量数据的依赖性等。因此,发展更高效、可解释的深度学习算法,提升计算平台的性能,以及更加注重数据隐私和安全,都是未来深度学习研究和应用的重要方向。

深度学习如今已经在各行各业中发挥着重要作用。在医疗领域,深度学习可以帮助医生进行影像诊断、预测病情发展趋势等,提高医疗效率和准确性。在金融领域,深度学习可以用于风险评估、欺诈检测等,提升金融机构的风控能力。在交通领域,深度学习可以应用于智能驾驶、交通预测等,改善交通拥堵和安全问题。这些仅仅是深度学习在各行各业中的冰山一角,它对社会经济的进步和科技发展的推动必将产生更加深远的影响。

总的来说,深度学习作为人工智能领域的重要支柱,正在重塑着我们的生活和工作方式。未来,随着技术的不断进步和创新,深度学习将会继续引领人工智能的发展,并为人类带来更加智能化、便利化的未来。

转载自:https://blog.csdn.net/u014727709/article/details/135991957
欢迎 👍点赞✍评论⭐收藏,欢迎指正文章来源地址https://www.toymoban.com/news/detail-830037.html

到了这里,关于深度学习:数据驱动的人工智能革命的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习与人工智能:一场革命性的变革

    1956年8月,在美国汉诺斯小镇宁静的达特茅斯学院中,约翰·麦卡锡(John McCarthy)、马文·闵斯基(MarvinMinsky,人工智能与认知学专家)、克劳德·香农(Claude Shannon,信息论的创始人)、艾伦·纽厄尔(AllenNewell,计算机科学家)、赫伯特·西蒙(Herbert Simon,诺贝尔经济学奖得

    2024年02月04日
    浏览(47)
  • 大数据、人工智能、机器学习、深度学习关系联系前言

    1.大数据和人工智能关系 2.机器学习、深度学习、人工智能关系 3.监督学习、无监督学习、半监督学习、强化学习、迁移学习关系 4.机器学习具体内容 1.数据驱动的人工智能 :人工智能系统需要大量的数据来进行训练和学习。大数据提供了海量的信息,可以用于训练机器学习

    2024年02月12日
    浏览(62)
  • 解锁数据分析的神器:ChatGPT引领人工智能革命

    💂 个人网站:【 海拥】【神级代码资源网站】【办公神器】 🤟 基于Web端打造的:👉轻量化工具创作平台 💅 想寻找共同学习交流的小伙伴,请点击【全栈技术交流群】 在当今数字化时代,数据分析成为决策制定和问题解决的关键工具。随着人工智能(AI)的迅猛发展,C

    2024年02月05日
    浏览(53)
  • 数据预处理的人工智能与深度学习:如何提高模型性能

    数据预处理是人工智能(AI)和深度学习(DL)领域中的一个关键环节,它涉及到数据清洗、数据转换、数据归一化、数据增强等多种操作,以提高模型性能。在过去的几年里,随着数据规模的增加和复杂性的提高,数据预处理的重要性得到了广泛认识。本文将从以下几个方面进行

    2024年02月19日
    浏览(79)
  • 基于深度学习的乳腺癌智能检测分割与诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割、人工智能

    《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌ 更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍 感谢小伙伴们点赞、关注! 《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】

    2024年04月13日
    浏览(79)
  • 【数据分析入门】人工智能、数据分析和深度学习是什么关系?如何快速入门 Python Pandas?

    本文详细介绍了人工智能、数据分析和深度学习之间的关系,并就数据分析所需的Pandas库做了胎教般的入门引导。祝读得开心!   本文是原 《数据分析大全》 、现改名为 《数据分析》 专栏的第二篇,我在写这篇文章的时候突然意识到—— 单靠我是不可能把数据分析的方

    2024年02月14日
    浏览(74)
  • 精华整理几十个Python数据科学、机器学习、深度学习、神经网络、人工智能方面的核心库以及详细使用实战案例,轻松几行代码训练自己的专有人工智能模型

    精华整理几十个Python数据科学、机器学习、深度学习、神经网络、人工智能方面的核心库以及详细使用实战案例,轻松几行代码训练自己的专有人工智能模型。 机器学习 人工智能的核心,是使计算机具有智能的根本途径。机器学习专注于算法,允许机器学习而不需要编程,

    2024年01月25日
    浏览(78)
  • 探索人工智能:深度学习、人工智能安全和人工智能编程(文末送书)

    人工智能知识对于当今的互联网技术人来说已经是刚需。但人工智能的概念、流派、技术纷繁复杂,选择哪本书入门最适合呢? 这部被誉为人工智能“百科全书”的《人工智能(第3版)》,可以作为每个技术人进入 AI 世界的第一本书。 购书链接,限时特惠5折 这本书是美国

    2024年02月03日
    浏览(118)
  • 人工智能之深度学习

    第一章 人工智能概述 1.1人工智能的概念和历史 1.2人工智能的发展趋势和挑战 1.3人工智能的伦理和社会问题 第二章 数学基础 1.1线性代数 1.2概率与统计 1.3微积分 第三章 监督学习 1.1无监督学习 1.2半监督学习 1.3增强学习 第四章 深度学习 1.1神经网络的基本原理 1.2深度学习的

    2024年02月09日
    浏览(54)
  • 人工智能深度学习

    目录 人工智能 深度学习 机器学习 神经网络 机器学习的范围 模式识别 数据挖掘 统计学习 计算机视觉 语音识别 自然语言处理 机器学习的方法 回归算法 神经网络 SVM(支持向量机) 聚类算法 降维算法 推荐算法 其他 机器学习的分类 机器学习模型的评估 机器学习的应用 机

    2024年02月22日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包