0. RabbitMQ不可靠原因
消息从生产者到消费者的每一步都可能导致消息丢失:
- 发送消息时丢失:
- 生产者发送消息时连接MQ失败
- 生产者发送消息到达MQ后未找到Exchange
- 生产者发送消息到达MQ的Exchange后,未找到合适的Queue
- 消息到达MQ后,处理消息的进程发生异常
- MQ导致消息丢失:
- 消息到达MQ,保存到队列后,尚未消费就突然宕机
- 消费者处理消息时:
- 消息接收后尚未处理突然宕机
- 消息接收后处理过程中抛出异常
1. 发送者的可靠性
1.1 生产者重试机制
解决生产者发送消息时,出现了网络故障,导致与MQ的连接中断。
spring:
rabbitmq:
connection-timeout: 1s # 设置MQ的连接超时时间
template:
retry:
enabled: true # 开启超时重试机制
initial-interval: 1000ms # 失败后的初始等待时间
multiplier: 1 # 失败后下次的等待时长倍数,下次等待时长 = initial-interval * multiplier
max-attempts: 3 # 最大重试次数
1.2 生产者确认机制
- 当消息投递到MQ,但是路由失败时,通过Publisher Return返回异常信息,同时返回ack的确认信息,代表投递成功
- 临时消息投递到了MQ,并且入队成功,返回ACK,告知投递成功
- 持久消息投递到了MQ,并且入队完成持久化,返回ACK ,告知投递成功
- 其它情况都会返回NACK,告知投递失败
其中ack和nack属于Publisher Confirm机制,ack是投递成功;nack是投递失败。而return则属于Publisher Return机制。
默认两种机制都是关闭状态,需要通过配置文件来开启。
开启Confirm和Return
spring:
rabbitmq:
publisher-confirm-type: correlated # 开启publisher confirm机制,并设置confirm类型
publisher-returns: true # 开启publisher return机制
这里publisher-confirm-type有三种模式可选:
- none:关闭confirm机制
- simple:同步阻塞等待MQ的回执
- correlated:MQ异步回调返回回执
一般使用correlated,回调机制。
定义ReturnCallback
@Slf4j
@AllArgsConstructor
@Configuration
public class MqConfig {
private final RabbitTemplate rabbitTemplate;
@PostConstruct
public void init(){
rabbitTemplate.setReturnsCallback(new RabbitTemplate.ReturnsCallback() {
@Override
public void returnedMessage(ReturnedMessage returned) {
log.error("触发return callback,");
log.debug("exchange: {}", returned.getExchange());
log.debug("routingKey: {}", returned.getRoutingKey());
log.debug("message: {}", returned.getMessage());
log.debug("replyCode: {}", returned.getReplyCode());
log.debug("replyText: {}", returned.getReplyText());
}
});
}
}
定义ConfirmCallback
@Test
void testPublisherConfirm() {
// 1.创建CorrelationData
CorrelationData cd = new CorrelationData();
// 2.给Future添加ConfirmCallback
cd.getFuture().addCallback(new ListenableFutureCallback<CorrelationData.Confirm>() {
@Override
public void onFailure(Throwable ex) {
// 2.1.Future发生异常时的处理逻辑,基本不会触发
log.error("send message fail", ex);
}
@Override
public void onSuccess(CorrelationData.Confirm result) {
// 2.2.Future接收到回执的处理逻辑,参数中的result就是回执内容
if(result.isAck()){ // result.isAck(),boolean类型,true代表ack回执,false 代表 nack回执
log.debug("发送消息成功,收到 ack!");
}else{ // result.getReason(),String类型,返回nack时的异常描述
log.error("发送消息失败,收到 nack, reason : {}", result.getReason());
}
}
});
// 3.发送消息
rabbitTemplate.convertAndSend("harry.direct", "q", "hello", cd);
}
开启生产者确认比较消耗MQ性能,一般不建议开启。而且触发确认的几种情况:
- 路由失败:一般是因为RoutingKey错误导致,往往是编程导致
- 交换机名称错误:同样是编程错误导致
- MQ内部故障:这种需要处理,但概率往往较低。因此只有对消息可靠性要求非常高的业务才需要开启,而且仅仅需要开启ConfirmCallback处理nack就可以了。
2. MQ的可靠性
2.1 数据持久化
为了提升性能,默认情况下MQ的数据都是在内存存储的临时数据,重启后就会消失。为了保证数据的可靠性,必须配置数据持久化,包括:
- 交换机持久化
- 队列持久化
- 消息持久化
可以在控制台界面设置。
设置为Durable就是持久化模式,Transient就是临时模式。
2.2 LazyQueue
在默认情况下,RabbitMQ会将接收到的信息保存在内存中以降低消息收发的延迟。但在某些特殊情况下,这会导致消息积压,比如:
- 消费者宕机或出现网络故障
- 消息发送量激增,超过了消费者处理速度
- 消费者处理业务发生阻塞
一旦出现消息堆积问题,RabbitMQ的内存占用就会越来越高,直到触发内存预警上限。此时RabbitMQ会将内存消息刷到磁盘上,这个行为成为PageOut.
PageOut会耗费一段时间,并且会阻塞队列进程。因此在这个过程中RabbitMQ不会再处理新的消息,生产者的所有请求都会被阻塞。为了解决这个问题,从RabbitMQ的3.6.0版本开始,就增加了Lazy Queues的模式,也就是惰性队列。惰性队列的特征如下:
- 接收到消息后直接存入磁盘而非内存
- 消费者要消费消息时才会从磁盘中读取并加载到内存(也就是懒加载)
- 支持数百万条的消息存储
而在3.12版本之后,LazyQueue已经成为所有队列的默认格式。因此官方推荐升级MQ为3.12版本或者所有队列都设置为LazyQueue模式。
在添加队列的时候,添加x-queue-mod=lazy参数即可设置队列为Lazy模式:
代码方式
@Bean
public Queue lazyQueue(){
return QueueBuilder
.durable("lazy.queue")
.lazy() // 开启Lazy模式
.build();
}
@RabbitListener(queuesToDeclare = @Queue(
name = "lazy.queue",
durable = "true",
arguments = @Argument(name = "x-queue-mode", value = "lazy")
))
public void listenLazyQueue(String msg){
log.info("接收到 lazy.queue的消息:{}", msg);
}
3. 消费者的可靠性
3.1 消费者确认机制
为了确认消费者是否成功处理消息,RabbitMQ提供了消费者确认机制(Consumer Acknowledgement)。即:当消费者处理消息结束后,应该向RabbitMQ发送一个回执,告知RabbitMQ自己消息处理状态。回执有三种可选值:
- ack:成功处理消息,RabbitMQ从队列中删除该消息
- nack:消息处理失败,RabbitMQ需要再次投递消息
- reject:消息处理失败并拒绝该消息,RabbitMQ从队列中删除该消息
一般reject方式用的较少,除非是消息格式有问题,那就是开发问题了。因此大多数情况下我们需要将消息处理的代码通过try catch机制捕获,消息处理成功时返回ack,处理失败时返回nack.
由于消息回执的处理代码比较统一,因此SpringAMQP帮我们实现了消息确认。并允许我们通过配置文件设置ACK处理方式,有三种模式:
- none:不处理。即消息投递给消费者后立刻ack,消息会立刻从MQ删除。非常不安全,不建议使用
- manual:手动模式。需要自己在业务代码中调用api,发送ack或reject,存在业务入侵,但更灵活
- auto:自动模式。SpringAMQP利用AOP对我们的消息处理逻辑做了环绕增强,当业务正常执行时则自动返回ack. 当业务出现异常时,根据异常判断返回不同结果:
- 如果是业务异常,会自动返回nack;
- 如果是消息处理或校验异常,自动返回reject;
spring:
rabbitmq:
listener:
simple:
acknowledge-mode: none # 不做处理
3.2 失败重试机制
当消费者出现异常后,消息会不断requeue(重入队)到队列,再重新发送给消费者。如果消费者再次执行依然出错,消息会再次requeue到队列,再次投递,直到消息处理成功为止。
spring:
rabbitmq:
listener:
simple:
retry:
enabled: true # 开启消费者失败重试
initial-interval: 1000ms # 初识的失败等待时长为1秒
multiplier: 1 # 失败的等待时长倍数,下次等待时长 = multiplier * last-interval
max-attempts: 3 # 最大重试次数
stateless: true # true无状态;false有状态。如果业务中包含事务,这里改为false
3.3 失败处理策略
@Configuration
@ConditionalOnProperty(name = "spring.rabbitmq.listener.simple.retry.enabled", havingValue = "true")
public class ErrorMessageConfig {
@Bean
public DirectExchange errorMessageExchange(){
return new DirectExchange("error.direct");
}
@Bean
public Queue errorQueue(){
return new Queue("error.queue", true);
}
@Bean
public Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){
return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");
}
@Bean
public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){
return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");
}
}
3.4 业务幂等性
3.4.1 唯一消息ID
- 每一条消息都生成一个唯一的id,与消息一起投递给消费者。
- 消费者接收到消息后处理自己的业务,业务处理成功后将消息ID保存到数据库
- 如果下次又收到相同消息,去数据库查询判断是否存在,存在则为重复消息放弃处理。
@Bean
public MessageConverter messageConverter(){
// 1.定义消息转换器
Jackson2JsonMessageConverter jjmc = new Jackson2JsonMessageConverter();
// 2.配置自动创建消息id,用于识别不同消息,也可以在业务中基于ID判断是否是重复消息
jjmc.setCreateMessageIds(true);
return jjmc;
}
3.4.2 业务判断
例如处理消息的业务逻辑是把订单状态从未支付修改为已支付。因此我们就可以在执行业务时判断订单状态是否是未支付,如果不是则证明订单已经被处理过,无需重复处理。文章来源:https://www.toymoban.com/news/detail-830040.html
3.5 兜底方案
既然MQ通知不一定发送到交易服务,那么交易服务就必须自己主动去查询支付状态。这样即便支付服务的MQ通知失败,我们依然能通过主动查询来保证订单状态的一致。文章来源地址https://www.toymoban.com/news/detail-830040.html
到了这里,关于RabbitMQ如何保证可靠的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!