数学知识——博弈论(巴什博奕、尼姆博奕、威佐夫博奕)思路及例题

这篇具有很好参考价值的文章主要介绍了数学知识——博弈论(巴什博奕、尼姆博奕、威佐夫博奕)思路及例题。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

博弈论基础

    博弈论又被称为对策论(Game Theory),既是现代数学的一个新分支,也是运筹学的一个重要学科。博弈论主要研究公式化了的激励结构间的相互作用,是研究具有斗争或竞争性质现象的数学理论和方法。博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略

引入:囚徒困境

    囚徒困境的故事讲的是,两个嫌疑犯小A、小B作案后被警察抓住,分别关在不同的屋子里接受审讯。警察知道两人有罪,但缺乏足够的证据。警察告诉每个人:如果两人都抵赖,各判刑一年;如果两人都坦白,各判五年;如果两人中一个坦白而另一个抵赖,坦白的放出去,抵赖的判十年

于是,每个囚徒都面临两种选择:坦白或抵赖。

巴什博弈,ACM,c++,算法,蓝桥杯

    在不和小B商量的情况下,作为小A的你是选择招供坐牢5年或0年,还是会选择抵赖坐牢10年或1年呢?

                                        巴什博弈,ACM,c++,算法,蓝桥杯

一般的人都会选着保险一点的招供吧。

    反观小B,也一定会做出同样的选择,也就是招供。换句话说,只要两名囚徒都是自私且理性的,那么双方都会同时选择招供,结果就是双方各判5年。

    在这个场景中,双方都无法单方面改变自己的博弈策略(单方面改变只会让自己蒙受损失),使得局面进入了一个微妙而又稳定的平衡,这个平衡被称为纳什均衡

    在现实中,也有很多类似的现象,比如家长给孩子报越来越多的课外班,比如高三考生备战高考,起来了啊.从局外人看来,许多竞争都是显而易见双输的局面,但是我们没有办法,因为我们都是参与博弈的“囚徒”。

ICG博弈

所讨论的博弈问题满足以下条件:

    玩家只有两个人轮流做出决策。

    游戏的状态集有限,保证游戏在有限步后结束,这样必然会产生不能操作者,其输。

    对任何一种局面,胜负只决定于局面本身,而与轮到哪位选手无关。

取石子游戏:取石子游戏是一个古老的博弈游戏,发源于中国,它是组合数学领域的一个经典问题。它有许多不同的玩法,基本上是两个玩家,玩的形式是轮流抓石子,胜利的标准是抓走最后的石子玩家设定: 先取石子的是玩家A(先手A),后取石子的是玩家B(后手B)。

经典的三种玩法

一、巴什博奕(Bash Game)

二、尼姆博奕(Nimm Game)

三、威佐夫博奕(Wythoff Game)

(一)巴什博弈

1堆n个石子每次最多取m个、至少取1个

Case 1:如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜

Case 2:n=(m+1)*r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后者拿走k(1≤k≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先取者肯定获胜

Case 3:n=r*(m+1),先手拿走k(1≤k≤m)个,那么后手再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,则后手胜,先手必败

总之,要保持给对手留下(m+1)的倍数,就能最后获胜。

术语:正经人称(m+1)的局面为奇异局势

变相的玩法

两个人轮流报数,每次至少报一个,最多报十个,谁能报到100者胜。(等价于从一堆100个石子中取石子,最后取完的胜)

例题:2368 -- Buttons (poj.org)

题面:

巴什博弈,ACM,c++,算法,蓝桥杯

      题面意思:有一堆k个的石头,每人轮流拿1,2,..L个石头,数据范围是3 <= K <= 100 000 000 ,2 <= L < K。输入k的值,要求输出最小的L,使得后者胜。

在理解了巴什博弈之后来看这题还是思路比较清晰的,首先想让后手胜,就必须把(1+L)的局面留给先手。这题没问我们谁会赢,问的是后手要赢的最小L值为多少。那我们就找到能被k整除的最小大于2的因数,之后减1输出就是答案了。

于是有了以下代码注意下(poj用不了万能头文件,编译器要求有点严格。):

//#include<bits/stdc++.h>
#include<iostream>
using namespace std;
typedef long long ll;
const int N=100005;
ll n;//石子数量
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    cin>>n;
    ll i;
    for(i=2;i<n;i++)//依次找最小的因子
    {
        if(n%(i+1)==0)
        {
            cout<<i<<endl;
            break;
        }
    }
    if(i==n) cout<<0<<endl;//找不到的情况下输出0
    return 0;
}

 就是说数据范围1e8,就超时快乐,TEL了哈哈哈哈哈哈。由于循环2~n,时间复杂度是O(n)。

    再有一个新的思路就是,遍历一遍所有的n的因数,存起来,在输出最小大于等于3的因数减一。一下代码时间复杂度为O(log n)。AC快乐。

//#include<bits/stdc++.h>
#include<algorithm>
#include<math.h>
#include<iostream>
#include<stdio.h>
using namespace std;
typedef long long ll;
const int N=100005;
ll n,a[N];//n为石头总数,a[i]存n的因数
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    cin>>n;
    int temp=0;
    for(int i=1;i*i<=n;i++)
    {
        if(n%i==0&&i*i!=n) a[temp++]=i,a[temp++]=n/i;
        //注意要区别开类似n=4时,因数为1,2,4.而不是1,2,2,4的情况
        else if(n%i==0&&i*i==n) a[temp++]=i;
    }
    sort(a,a+temp);//从小到大排序一下
    for(int i=0;i<temp;i++)
    {
        if(a[i]>=3)//找到最小大于等于3的因数,减一输出
        {
            cout<<a[i]-1<<endl;
            break;
        }
    }
    return 0;
}

(二)尼姆博弈

有n堆石子,每堆石子的数量是a1,a2,a3……,二个人依次从这些石子堆中的一个拿取任意的石子至少一个,最后一个拿光石子的人胜利

n=1: 先手全拿,先手必胜。

n=2:有两种情况,一种可能相同,一种情况一堆比另一堆少(多)

        (m,m) 按照“有一学一,照猫画猫”法,先手必输。

        (m,M)先手先从多的一堆中拿出(M-m)个,此时后手面对(m,m)的局面先手必胜。

术语:正经人称(m,m)的局面为奇异局势

n=3:(m,m,M)先手必胜局,先手可以先拿M,之后变成了(m,m,0)的局面,是不是很熟悉~

 (a1,a2,a3)的话,举个例子(1,2,3),先手取完之后可能的局面为(0,2,3),(1,1,3),(1,0,3),(1,2,2),(1,2,1),(1,2,0)都是之前讲过的,情况如下:

巴什博弈,ACM,c++,算法,蓝桥杯

 巴什博弈,ACM,c++,算法,蓝桥杯

巴什博弈,ACM,c++,算法,蓝桥杯

前人告诉我们的规律是:异或的结果均为0

获胜情况的讨论

面对异或结果为0的玩家必输。

结果不为0,则玩家有获胜的取法。

例题:891. Nim游戏 - AcWing题库

 题面:

巴什博弈,ACM,c++,算法,蓝桥杯

看懂了尼姆博奕,这个题目就是分分钟AC咯。

上代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=100005;
ll n,a[N];
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    cin>>n;
    for(int i=0;i<n;i++)
        cin>>a[i];
    int ans=a[0];
    for(int i=1;i<n;i++) ans^=a[i];//^就是做异或运算
    if(ans==0) cout<<"No"<<endl;
    else cout<<"Yes"<<endl;
    return 0;
}

(三)威佐夫博弈

有两堆各若干个物品,两个人轮流从任一堆取至少一个同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

举一个例子:局势是(1,2),先手有四种取法,动动你聪明的脑子就会发现无论先手怎么取,后手都能胜利,也就是说(1,2)是奇异局势。

没脑子的人来看看分析咯:

先手从第一堆里面拿1个,后者拿光后面的2个,后者胜。

先手从第一堆和第二堆里面同时拿1个,后者只能拿走第二堆剩下的1个,后者胜。

先手从第二堆里面拿2个,后手拿走第一堆的1个,后者胜.

先手从第二堆里面拿1个,后手从第一堆和第二堆里面同时拿走1个,后者胜。

假设现在的局势是(3,5):

(1)先手在“3”中取1个,后手就可以在“5”中取走4个,这样就变成了(1,2)的局势

(2)先手在“3”中取2个,后手就可以在 “5” 中取走3个,这样也变成了(1,2)的局势

(3)先手在“5”中取1个,后手就在 “3”和“5” 中各取走2个,这样成了(1,2)的局势

(4)先手在”5”中取2个,后手就在 “3”和”5”中各取走3个,这样变成了(0,0)的局势,先手输

(5)先手在“5”中取3个,后手就在 “3”和“5” 中各取走1个,也变成了(1,2)的局势

(6)先手在“5”中取4个,后手在“3”中取走1个,还是(1,2)的局势

我们可以来找找那些先手必输局势的规律(奇异局势)

  • 第一种(0,0)
  • 第二种(1,2)
  • 第三种(3,5)
  • 第四种  (4 ,7)
  • 第五种(6,10)
  • 第六种  (8,13)              
  • 第七种  (9 ,15)
  • 第八种  (11 ,18)
  • 第n种(a,b)

我们会发现他们的差值是递增的,分别是0,1,2,3,4,5,6,7......n

还有一个规律(正常人都发现不了):a=(b-a)*1.618向下取整

 就是:a = int(b - a)*1.618

注:这里的int是强制类型转换,注意这不是简单的四舍五入,假如后面的值是3.9,转换以后得到的不是4而是3,也就是说强制int类型转换得到的是不大于这个数值的最大整数

有些题目要求精度较高,我们可以用下述式子来表示这个值:

1.618 = (sqrt(5.0) + 1) / 2   

头文件:include<math.h>

例题:1067 -- 取石子游戏 (poj.org)

题面:

巴什博弈,ACM,c++,算法,蓝桥杯

 代码:文章来源地址https://www.toymoban.com/news/detail-830160.html

//#include<bits/stdc++.h>
#include<algorithm>
#include<math.h>
#include<iostream>
#include<stdio.h>
using namespace std;
typedef long long ll;
const int N=100005;
ll a,b;
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    while(cin>>a>>b)//多组输入!!!
    {
        double flag= (sqrt(5.0) + 1) / 2.0;//精度高一些用double来存1.618
        if(a>b) swap(a,b);//保证b要比a大,后面有用到b-a
        if(a==int((b-a)*flag))cout<<0<<endl;//先手面对奇异局势必输
        else cout<<1<<endl;
    }

    return 0;
}

到了这里,关于数学知识——博弈论(巴什博奕、尼姆博奕、威佐夫博奕)思路及例题的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【学习笔记】博弈论 ---- 非偏博弈

    本篇按照 Qingyu 在省集讲的加入我这个萌新的萌新理解而成。 听了 Qingyu 的博弈论讲解,感觉我之前学过的博弈就是冰山一角。 由于有一些东西没听懂,就主要写写我听懂的部分,没懂得以后再说吧。 所以这篇只是一个入门,关于博弈的一些习题可能会咕咕咕。 几个基本定

    2024年02月07日
    浏览(56)
  • 博弈论 | 斐波那契博弈

    博弈论是二人或多人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜目标的理论。博弈论是研究互动决策的理论。博弈可以分析自己与对手的利弊关系,从而确立自己在博弈中的优势,因此有不少博弈理论,可以帮助对弈者分析局势,从而采取相应策略,最终达到

    2024年02月12日
    浏览(43)
  • 汤姆·齐格弗里德《纳什均衡与博弈论》笔记(7)博弈论与概率论

    第十一章 帕斯卡的赌注——博弈、概率、信息与无知 在与费马就这个问题的通信过程中,帕斯卡创造出了概率论。另外,帕斯卡在进行严谨的宗教反思中,得出了 概率 这个概念,它在此几百年后,成为一个关键的、对博弈论的提出有重要意义的数学概念。 帕斯卡观察到,

    2024年01月25日
    浏览(52)
  • 博弈论-策略式博弈矩阵、扩展式博弈树 习题 [HBU]

    目录 前言: 题目与求解 11.请将“田忌赛马”的博弈过程用策略式(博弈矩阵)和扩展式(博弈树)分别进行表示,并用文字分别详细表述。 34.两个朋友在一起划拳喝酒,每个人有4个纯策略:杠子、老虎、鸡和虫子。 输赢规则是:杠子降老虎,老虎降鸡,鸡降虫子,虫子降

    2024年02月03日
    浏览(49)
  • 【博弈论笔记】第二章 完全信息静态博弈

    此部分博弈论笔记参考自经济博弈论(第四版)/谢识予和老师的PPT,是在平时学习中以及期末备考中整理的,主要注重对本章节知识点的梳理以及重点知识的理解,细节和逻辑部分还不是很完善,可能不太适合初学者阅读(看书应该会理解的更明白O(∩_∩)O哈哈~)。现更新到

    2024年02月10日
    浏览(51)
  • Nim游戏博弈论

    https://www.luogu.com.cn/problem/P2197 甲,乙两个人玩 nim 取石子游戏。 nim 游戏的规则是这样的:地上有 n n n 堆石子(每堆石子数量小于 1 0 4 10^4 1 0 4 ),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以取完,不能不取。每次只能从一堆里取。最后没石子可取的人就输了

    2024年02月15日
    浏览(47)
  • 博弈论入门

    古诺双寡头模型的条件 市场中有且仅有两家公司 策略为同质商品的量, q i q_i q i ​ 边际成本为c,生产成本就为c*q,在这里我们的边际成本是常数。 需求曲线: P = a − b ∗ ( q 1 + q 2 ) P=a-b*(q_1+q_2) P = a − b ∗ ( q 1 ​ + q 2 ​ ) 利润: U 1 ( q 1 , q 2 ) = P ∗ q 1 − c ∗ q 1 , U 2 (

    2024年02月02日
    浏览(45)
  • 博弈论算法常见模型整理

    本文主要介绍算法竞赛中常常出现的博弈论模型,包括: 4个经典组合游戏 SG函数 SG游戏及拓展 进一步学习需要了解一些前置概念 ICG 博弈图 P点、N点 mex函数 1.ICG ICG全称为“公平组合游戏”,我们下面讨论的博弈游戏均建立在ICG的基础上,那么什么是ICG呢,它需要满足以下条

    2023年04月26日
    浏览(44)
  • 博弈论小课堂:零和博弈(找到双方的平衡点)

    从概率论延伸出来的课题——博弈论,博弈论中最典型的两大类博弈,是“零和博弈”与“非零和博弈”。博弈论所研究的最优化问题有多方参与,因此最优化的策略要考虑对方的行为。 博弈论通常被认为是冯·诺依曼发明的,博弈论从本质上讲,是一套解决最优化问题的方

    2024年02月09日
    浏览(45)
  • 台阶型Nim游戏博弈论

    https://www.acwing.com/problem/content/894/ 现在,有一个 n n n 级台阶的楼梯,每级台阶上都有若干个石子,其中第 i i i 级台阶上有 a i a_i a i ​ 个石子( i ≥ 1 i ge 1 i ≥ 1 )。 两位玩家轮流操作,每次操作可以从任意一级台阶上拿若干个石子放到下一级台阶中(不能不拿)。 已经拿到

    2024年02月14日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包