图像卷积、步长、填充、特征图、多通道卷积、权重共享、感受野、池化

这篇具有很好参考价值的文章主要介绍了图像卷积、步长、填充、特征图、多通道卷积、权重共享、感受野、池化。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

图像卷积、步长、填充、特征图、多通道卷积、权重共享、感受野、池化

卷积神经网络的一些基本概念:图像卷积、步长、填充特征图、多通道卷积权重共享、感受野、池化

1.图像卷积、步长、填充

图像卷积:卷积核矩阵在一个原始图像矩阵上 “从上往下、从左往右”滑动窗口进行卷积计算,然后将所有结果组合到一起得到一个新的矩阵的过程。(图1.13)

图像卷积、步长、填充、特征图、多通道卷积、权重共享、感受野、池化,深度学习小知识,深度学习,神经网络,cnn
  • 用一个相同的卷积核对整幅图像进行进行卷积操作,相当于对图像做一次全图滤波符合卷积核特征的部分得到的结果比较大不符合卷积核特征的部分得到的结果比较小,因此卷积操作后的结果可以较好地表征该区域符合卷积核所描述的特征的程度

  • 一次完整的卷积会选出图片上所有符合这个卷积核特征

    如果将大量图片作为训练集,则卷积核最终会被训练成有意义的特征。例如,识别飞机,卷积核可以是机身或者飞机机翼的形状等。

步长(Stride):卷积核在图像上移动的步子,不同的步长会影响输出图的尺寸。

更大的步长意味着空间分辨率的快速下降。

图像卷积、步长、填充、特征图、多通道卷积、权重共享、感受野、池化,深度学习小知识,深度学习,神经网络,cnn

图1.14:输入图都是5×5,卷积核大小都是3×3。

Stride=1,卷积后的结果=3×3

Streide=2,卷积后的结果=2×2

填充(Padding):为了更好地控制输入和输出图的大小,一般会对输入进行填充操作。

填充操作就是在原来输入图的边界外进行扩充,使其变得更大,卷积后的结果也会更大

通常会设计卷积网络层时小心地进行填充,从而精确地控制输入图和输出图的大小关系。

图像卷积、步长、填充、特征图、多通道卷积、权重共享、感受野、池化,深度学习小知识,深度学习,神经网络,cnn图1.15:无填充和有填充卷积的对比结果。

没有填充:输入为3×3的图,输出为2×2的图,分辨率降低。

有填充:在原图周围填充一行或一列的0,输出为4×4,分辨率没有降低。

2.特征图与多通道卷积

特征图:

图像卷积、步长、填充、特征图、多通道卷积、权重共享、感受野、池化,深度学习小知识,深度学习,神经网络,cnn

图1.13展示的是单个图像的卷积,而一个卷积神经网络,其每一层都是由多个图组成的,将其成为特征图或者特征平面,如图1.16所示。

图像卷积、步长、填充、特征图、多通道卷积、权重共享、感受野、池化,深度学习小知识,深度学习,神经网络,cnn

特征平面(Frature Map)包含高度、宽度和通道共三个维度,形状为C×H×W。

多通道卷积

在卷积神经网络中,要实现的是多通道卷积,假设输入特征图大小是Ci×Hi×Wi,输出特征图大小是C0×H0×W0,则多通道卷积如图1.17所示。

图像卷积、步长、填充、特征图、多通道卷积、权重共享、感受野、池化,深度学习小知识,深度学习,神经网络,cnn

其中,每个出书特征图都由Ci个卷积核与通道数为Ci 的输入特征图进行逐通道卷积,然后将结果相加,一共需要Ci×C0个卷积核,每Ci 个为一组,共C0组。

3.权重共享

当对每组进行卷积时,不同的通道使用不同的卷积核。但当卷积核在同一幅图的不同空间位置进行卷积时,采取的是权重共享的模式,这是卷积神经网络非常重要的概念。

局部连接:思想来自生理学的感受野机制和图像的局部统计特性

权重共享:可以使得图像在一个局部区域学习到的信息应用到其他区域,使同样的目标在不同的位置能够提取到同样的特征

局部连接和权重共享结构大大降低了参数量

卷积神经网络某一层的参数量由输入通道数N、输出通道数M和卷积核的大小r决定。

一层连接的参数量=N×M×r×r

4.感受野(Receptive Field)

可以将感受野理解为视觉感受区域的大小。

在卷积神经网络中,感受野是特征平面上的一个点(即神经元)在输入图上对应的区域,如图1.18所示。

图像卷积、步长、填充、特征图、多通道卷积、权重共享、感受野、池化,深度学习小知识,深度学习,神经网络,cnn

如果一个神经元的大小受到输入层N×N的神经元区域的影响,那么可以说该神经元的感受野是N×N,因为它反映了N×N区域的信息。

图1.18:Conv2中的像素点为5,是由Conv1的2×2的区域得来的,而该2×2区域是由原始图像的5×5区域计算而来,因此该像素的感受野是5×5。可以看出,感受野越大,得到的全局信息就越多。

5.池化(Pooling)

图1.18中,从原图到Conv1再到Conv2,图像越来越小,每过一级项相当于一次降采样,这就是池化。

池化通过步长不为1的卷积来实现,也可以通过插值采样实现,本质上没有区别,只是权重不同。

池化作用:

  • 池化层可以对输入的特征图进行压缩,一方面使特征图变小,简化网络计算的复杂度

    PS:池化操作会使特征图缩小,有可能影响网络的准确度,对此可以通过增加特征图的深度来弥补精度的缺失

  • 另一方面可以提取主要特征,有利于降低过拟合风险

    池化层在一定程度上保持尺度不变形

    eg:一辆车图像缩小了50%后仍然能认出这是一辆车,说明处理后的图像仍然包含原始图像的最重要的特征。

    图像压缩时去掉的只是一些冗余信息,留下的信息则是具有尺度不变性的特征,其最能表达图像的特征。

    图像卷积、步长、填充、特征图、多通道卷积、权重共享、感受野、池化,深度学习小知识,深度学习,神经网络,cnn

常见池化分类
(图1.19)
平均池化(Average Pooling) 最大池化(Max Pooling)
概念 计算池化区域所有元素的平均值作为该区域池化后的值 池化区域的最大值作为该区域池化后的值
特点 能够保留整体数据的特征,能较好的突出背景信息 能更好地保留纹理特征

套用卷积通用公式:
o u t p u t = [ ( i n p u t − f i l t e r S i z e + 2 ∗ p a d d i n g ) / s t r i d e ] + 1 output=[(input-filterSize+2*padding)/stride]+1 output=[(inputfilterSize+2padding)/stride]+1
PS:公式是向下取整

参考文献:
1.《深度学习之图像识别 核心算法与实战案例 (全彩版)》言有三 著

出版社:清华大学出版社 ,出版时间:2023年7月第一版(第一次印刷)

ISBN:978-7-302-63527-7

文章来源地址https://www.toymoban.com/news/detail-830282.html

到了这里,关于图像卷积、步长、填充、特征图、多通道卷积、权重共享、感受野、池化的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 无卷积步长或池化:用于低分辨率图像和小物体的新 CNN 模块SPD-Conv

    (67条消息) 无卷积步长或池化:用于低分辨率图像和小物体的新CNN模块SPD-Conv-行业报告文档类资源-CSDN文库 https://download.csdn.net/download/weixin_53660567/86737435 摘要 卷积神经网络 (CNNs) 在图像分类和目标检测等计算机视觉任务中取得了显著的成功。然而,当图像分辨率较低或物体较小

    2024年02月02日
    浏览(36)
  • 卷积神经网络每一层输出的形状、通道数、特征图数量以及过滤器数量的理解与计算。

    参考: http://t.csdn.cn/8ApfD ‘http://t.csdn.cn/ZmEOJ 核心观点:  前一层的通道数(特征图数量),决定这一层过滤器的深度; 这一层过滤器的数量,决定这一层输出的通道数(特征图数量) 神经网络每一层输出矩阵的形状一般是4个维度[y1, y2, y3, y4] y1 通常是batch_size,就是每一圈丢

    2023年04月09日
    浏览(50)
  • (新SOTA)UNETR++:轻量级的、高效、准确的共享权重的3D医学图像分割

    0 Abstract 由于Transformer模型的成功,最近的工作研究了它们在3D医学分割任务中的适用性。在Transformer模型中,与基于局部卷积的设计相比,自注意力机制是努力捕获远程依赖性的主要构建块之一。然而,self-attention操作具有平方复杂性,这被证明是一个计算瓶颈,特别是在三维

    2023年04月16日
    浏览(39)
  • 卷积神经网络提取图像特征的操作是怎样完成的

    。 卷积神经网络有以下几种应用可供研究:1、基于卷积网络的形状识别物体的形状是人的视觉系统分析和识别物体的基础,几何形状是物体的本质特征的表现,并具有平移、缩放和旋转不变等特点,所以在模式识别领域,对于形状的分析和识别具有十分重要的意义,而二维

    2024年02月07日
    浏览(41)
  • 计算机视觉:卷积步长(Stride)

    我们前面学习了卷积操作,也学习了填充,本节课程我们学习卷积步长,之前我们使用卷积核进行卷积操作都是在图像的左上角开始,从左到右、从上到下每次移动一步,其实移动多少步是可以变化的,这个移动步数称为步长。 卷积操作中的步长(Stride)是指卷积核在图像上

    2024年02月11日
    浏览(38)
  • 基于3D卷积的图像序列特征提取与自注意力的车牌识别方法

    【摘  要】 近年来,基于自注意力机制的神经网络在计算机视觉任务中得到广泛的应用。随着智能交通系统的广泛应用,面对复杂多变的交通场景,车牌识别任务的难度不断提高,准确识别的需求更加迫切。因此提出一个基于自注意力的免矫正的车牌识别方法T-LPR。首先对图

    2023年04月09日
    浏览(32)
  • 神经网络基础-神经网络补充概念-60-卷积步长

    在深度学习中,卷积步长(convolution stride)是指在卷积操作中滑动卷积核的步幅。卷积操作是神经网络中常用的操作之一,用于从输入数据中提取特征。步长决定了卷积核在输入数据上的滑动间隔,从而影响输出特征图的大小。 卷积步长的值可以是正整数,通常为1、2、3等。

    2024年02月12日
    浏览(48)
  • 卷积神经网络中的图像特征——以YOLOv5为例进行可视化

    一、图像特征 1. 图像低层特征 图像低层特征指的是:边缘、颜色和纹理等特征。 低层特征的分辨率较高,包含较多的位置、细节信息,但其包含的语义信息较少,噪声较多。 原始图像和浅层卷积网络输出的特征图属于低层特征,从低层特征图中可以看清轮廓、边缘等信息。

    2024年02月05日
    浏览(39)
  • 第55步 深度学习图像识别:CNN特征层和卷积核可视化(TensorFlow)

    一、写在前面 (1)CNN可视化 在理解和解释卷积神经网络(CNN)的行为方面,可视化工具起着重要的作用。以下是一些可以用于可视化的内容: (a)激活映射(Activation maps): 可以显示模型在训练过程中的激活情况,这可以帮助我们理解每一层(或每个过滤器)在识别图像

    2024年02月14日
    浏览(73)
  • 特征图和感受野

    特征图和感受野是深度学习中非常重要的概念,本文将从理论和实践两个方面详细解释它们的含义和作用。 特征图是深度学习中常用的一种数据结构,它是卷积神经网络(CNN)中的一个重要概念。特征图是由一系列卷积核对输入图像进行卷积操作得到的结果。它可以看作是原

    2024年02月07日
    浏览(27)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包