人工智能学习与实训笔记(二):神经网络之图像分类问题

这篇具有很好参考价值的文章主要介绍了人工智能学习与实训笔记(二):神经网络之图像分类问题。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

人工智能专栏文章汇总:人工智能学习专栏文章汇总-CSDN博客

目录

二、图像分类问题

2.1 尝试使用全连接神经网络

2.2 引入卷积神经网络

 2.3 分类函数Softmax

2.4 交叉熵损失函数

2.5 学习率优化算法

2.6 图像预处理算法

2.6.1 随机改变亮暗、对比度和颜色等

2.6.2 随机填充

2.6.3 随机裁剪

2.6.4 随机缩放

2.6.5 随机翻转

2.6.6 随机打乱真实框排列顺序


二、图像分类问题

图像分类问题是神经网络经常遇到的处理任务,需要将图像按给定的类别进行分类。

本篇通过手写数字识别这个典型的图像分类任务(0~9个数字一共是10个类别),来了解图像分类问题的特点,原理和方法。

我们首先尝试使用典型的全连接神经网络,再引入适合图像处理任务的卷积神经网络。

2.1 尝试使用全连接神经网络

经典的全连接神经网络来包含四层网络:输入层、两个隐含层和输出层,将手写数字识别任务通过全连接神经网络表示:

人工智能学习与实训笔记(二):神经网络之图像分类问题,人工智能技术学习,人工智能,学习,笔记

  • 输入层:将数据输入给神经网络。在该任务中,输入层的尺度为28×28的像素值。
  • 隐含层:增加网络深度和复杂度,隐含层的节点数是可以调整的,节点数越多,神经网络表示能力越强,参数量也会增加。在该任务中,中间的两个隐含层为10×10的结构,通常隐含层会比输入层的尺寸小,以便对关键信息做抽象,激活函数使用常见的Sigmoid函数。
  • 输出层:输出网络计算结果,输出层的节点数是固定的。如果是回归问题,节点数量为需要回归的数字数量。如果是分类问题,则是分类标签的数量。在该任务中,模型的输出是回归一个数字,输出层的尺寸为1。

Python源码 - 激活函数为sigmoid的多层网络参考代码:

import paddle.nn.functional as F
from paddle.nn import Linear

# 定义多层全连接神经网络
class MNIST(paddle.nn.Layer):
    def __init__(self):
        super(MNIST, self).__init__()
        # 定义两层全连接隐含层,输出维度是10,当前设定隐含节点数为10,可根据任务调整
        self.fc1 = Linear(in_features=784, out_features=10)
        self.fc2 = Linear(in_features=10, out_features=10)
        # 定义一层全连接输出层,输出维度是1
        self.fc3 = Linear(in_features=10, out_features=1)
    
    # 定义网络的前向计算,隐含层激活函数为sigmoid,输出层不使用激活函数
    def forward(self, inputs):
        # inputs = paddle.reshape(inputs, [inputs.shape[0], 784])
        outputs1 = self.fc1(inputs)
        outputs1 = F.sigmoid(outputs1)
        outputs2 = self.fc2(outputs1)
        outputs2 = F.sigmoid(outputs2)
        outputs_final = self.fc3(outputs2)
        return outputs_final

然而,全连接神经网络模型并不适合图像分类模型,图像分类任务需要考虑图像数据的空间性,以及如何分类(波士顿房价预测是回归任务,是回归到一个具体数字,手写数字识别实际上是进行分类判断),对于图像识别和分类任务,我们需要引入卷积神经网络,Softmax激活函数以及交叉熵损失函数,整个流程如下图:

人工智能学习与实训笔记(二):神经网络之图像分类问题,人工智能技术学习,人工智能,学习,笔记

2.2 引入卷积神经网络

图像识别需要考虑数据的空间分布,更适合使用卷积神经网络模型,模型中包含卷积层(convolution)和池化层(subsampling),以及最后一个全连接层(fully connected)

关于卷积神经网络,可以参考这一篇:

PyTorch学习系列教程:卷积神经网络【CNN】 - 知乎

关于卷积核和输入,输出通道,可以参考这一篇:

如何理解卷积神经网络中的通道(channel)_卷积通道数_叹久01的博客-CSDN博客

人工智能学习与实训笔记(二):神经网络之图像分类问题,人工智能技术学习,人工智能,学习,笔记​​

Python源码 - 卷积神经网络参考代码:

# 定义 SimpleNet 网络结构
import paddle
from paddle.nn import Conv2D, MaxPool2D, Linear
import paddle.nn.functional as F
# 多层卷积神经网络实现
class MNIST(paddle.nn.Layer):
     def __init__(self):
         super(MNIST, self).__init__()
         
         # 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2
         self.conv1 = Conv2D(in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=2)
         # 定义池化层,池化核的大小kernel_size为2,池化步长为2
         self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)
         # 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2
         self.conv2 = Conv2D(in_channels=20, out_channels=20, kernel_size=5, stride=1, padding=2)
         # 定义池化层,池化核的大小kernel_size为2,池化步长为2
         self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)
         # 定义一层全连接层,输出维度是1
         self.fc = Linear(in_features=980, out_features=1)
         
    # 定义网络前向计算过程,卷积后紧接着使用池化层,最后使用全连接层计算最终输出
    # 卷积层激活函数使用Relu,全连接层不使用激活函数
     def forward(self, inputs):
         x = self.conv1(inputs)
         x = F.relu(x)
         x = self.max_pool1(x)
         x = self.conv2(x)
         x = F.relu(x)
         x = self.max_pool2(x)
         x = paddle.reshape(x, [x.shape[0], -1])
         x = self.fc(x)
         return x

 2.3 分类函数Softmax

 为了进行分类判别,要通过引入Softmax函数到输出层,使得输出层的输出为不同类别概率的集合,并且所有概率之和为1,比如[0.1, 0.2, 0.7]

人工智能学习与实训笔记(二):神经网络之图像分类问题,人工智能技术学习,人工智能,学习,笔记​​

比如,一个三个标签的分类模型(三分类)使用的Softmax输出层,从中可见原始输出的三个数字3、1、-3,经过Softmax层后转变成加和为1的三个概率值0.88、0.12、0。

人工智能学习与实训笔记(二):神经网络之图像分类问题,人工智能技术学习,人工智能,学习,笔记​​

2.4 交叉熵损失函数

分类网络模型需要使用交叉熵损失函数不断训练更新模型参数,最终使得交叉熵趋于收敛,从而完成模型训练。

正确解标签对应的输出越大,交叉熵的值越接近0;当输出为1时,交叉熵误差为0。反之,如果正确解标签对应的输出越小,则交叉熵的值越大。 

人工智能学习与实训笔记(二):神经网络之图像分类问题,人工智能技术学习,人工智能,学习,笔记​​

要想搞清楚交叉熵,推荐大家读一下这篇文章:损失函数:交叉熵详解 - 知乎

里面又牵涉到极大似然估计理论,推荐阅读这篇文章:极大似然估计思想的最简单解释_class_brick的博客-CSDN博客

2.5 学习率优化算法

学习率是优化器的一个参数,调整学习率看似是一件非常麻烦的事情,需要不断的调整步长,观察训练时间和Loss的变化。经过研究员的不断的实验,当前已经形成了四种比较成熟的优化算法:SGD、Momentum、AdaGrad和Adam,效果如 所示。

人工智能学习与实训笔记(二):神经网络之图像分类问题,人工智能技术学习,人工智能,学习,笔记

图3: 不同学习率算法效果示意图

  • SGD: 随机梯度下降算法,每次训练少量数据,抽样偏差导致的参数收敛过程中震荡。
  • Momentum: 引入物理“动量”的概念,累积速度,减少震荡,使参数更新的方向更稳定。
  • AdaGrad: 根据不同参数距离最优解的远近,动态调整学习率。学习率逐渐下降,依据各参数变化大小调整学习率。
  • Adam: 由于动量和自适应学习率两个优化思路是正交的,因此可以将两个思路结合起来,这就是当前广泛应用的算法。

2.6 图像预处理算法

在计算机视觉中,通常会对图像做一些随机的变化,产生相似但又不完全相同的样本。主要作用是扩大训练数据集,抑制过拟合,提升模型的泛化能力,常用的方法主要有以下几种:

  • 随机改变亮暗、对比度和颜色
  • 随机填充
  • 随机裁剪
  • 随机缩放
  • 随机翻转
  • 随机打乱真实框排列顺序

下面是分别使用numpy 实现这些数据增强方法。

2.6.1 随机改变亮暗、对比度和颜色等

import numpy as np
import cv2
from PIL import Image, ImageEnhance
import random

# 随机改变亮暗、对比度和颜色等
def random_distort(img):
    # 随机改变亮度
    def random_brightness(img, lower=0.5, upper=1.5):
        e = np.random.uniform(lower, upper)
        return ImageEnhance.Brightness(img).enhance(e)
    # 随机改变对比度
    def random_contrast(img, lower=0.5, upper=1.5):
        e = np.random.uniform(lower, upper)
        return ImageEnhance.Contrast(img).enhance(e)
    # 随机改变颜色
    def random_color(img, lower=0.5, upper=1.5):
        e = np.random.uniform(lower, upper)
        return ImageEnhance.Color(img).enhance(e)

    ops = [random_brightness, random_contrast, random_color]
    np.random.shuffle(ops)

    img = Image.fromarray(img)
    img = ops[0](img)
    img = ops[1](img)
    img = ops[2](img)
    img = np.asarray(img)

    return img

# 定义可视化函数,用于对比原图和图像增强的效果
import matplotlib.pyplot as plt
def visualize(srcimg, img_enhance):
    # 图像可视化
    plt.figure(num=2, figsize=(6,12))
    plt.subplot(1,2,1)
    plt.title('Src Image', color='#0000FF')
    plt.axis('off') # 不显示坐标轴
    plt.imshow(srcimg) # 显示原图片

    # 对原图做 随机改变亮暗、对比度和颜色等 数据增强
    srcimg_gtbox = records[0]['gt_bbox']
    srcimg_label = records[0]['gt_class']

    plt.subplot(1,2,2)
    plt.title('Enhance Image', color='#0000FF')
    plt.axis('off') # 不显示坐标轴
    plt.imshow(img_enhance)


image_path = records[0]['im_file']
print("read image from file {}".format(image_path))
srcimg = Image.open(image_path)
# 将PIL读取的图像转换成array类型
srcimg = np.array(srcimg)

# 对原图做 随机改变亮暗、对比度和颜色等 数据增强
img_enhance = random_distort(srcimg)
visualize(srcimg, img_enhance)

2.6.2 随机填充

# 随机填充
def random_expand(img,
                  gtboxes,
                  max_ratio=4.,
                  fill=None,
                  keep_ratio=True,
                  thresh=0.5):
    if random.random() > thresh:
        return img, gtboxes

    if max_ratio < 1.0:
        return img, gtboxes

    h, w, c = img.shape
    ratio_x = random.uniform(1, max_ratio)
    if keep_ratio:
        ratio_y = ratio_x
    else:
        ratio_y = random.uniform(1, max_ratio)
    oh = int(h * ratio_y)
    ow = int(w * ratio_x)
    off_x = random.randint(0, ow - w)
    off_y = random.randint(0, oh - h)

    out_img = np.zeros((oh, ow, c))
    if fill and len(fill) == c:
        for i in range(c):
            out_img[:, :, i] = fill[i] * 255.0

    out_img[off_y:off_y + h, off_x:off_x + w, :] = img
    gtboxes[:, 0] = ((gtboxes[:, 0] * w) + off_x) / float(ow)
    gtboxes[:, 1] = ((gtboxes[:, 1] * h) + off_y) / float(oh)
    gtboxes[:, 2] = gtboxes[:, 2] / ratio_x
    gtboxes[:, 3] = gtboxes[:, 3] / ratio_y

    return out_img.astype('uint8'), gtboxes


# 对原图做 随机改变亮暗、对比度和颜色等 数据增强
srcimg_gtbox = records[0]['gt_bbox']
img_enhance, new_gtbox = random_expand(srcimg, srcimg_gtbox)
visualize(srcimg, img_enhance)

2.6.3 随机裁剪

随机裁剪之前需要先定义两个函数,multi_box_iou_xywhbox_crop这两个函数将被保存在box_utils.py文件中。文章来源地址https://www.toymoban.com/news/detail-830348.html

import numpy as np

def multi_box_iou_xywh(box1, box2):
    """
    In this case, box1 or box2 can contain multi boxes.
    Only two cases can be processed in this method:
       1, box1 and box2 have the same shape, box1.shape == box2.shape
       2, either box1 or box2 contains only one box, len(box1) == 1 or len(box2) == 1
    If the shape of box1 and box2 does not match, and both of them contain multi boxes, it will be wrong.
    """
    assert box1.shape[-1] == 4, "Box1 shape[-1] should be 4."
    assert box2.shape[-1] == 4, "Box2 shape[-1] should be 4."


    b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
    b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
    b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
    b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2

    inter_x1 = np.maximum(b1_x1, b2_x1)
    inter_x2 = np.minimum(b1_x2, b2_x2)
    inter_y1 = np.maximum(b1_y1, b2_y1)
    inter_y2 = np.minimum(b1_y2, b2_y2)
    inter_w = inter_x2 - inter_x1
    inter_h = inter_y2 - inter_y1
    inter_w = np.clip(inter_w, a_min=0., a_max=None)
    inter_h = np.clip(inter_h, a_min=0., a_max=None)

    inter_area = inter_w * inter_h
    b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
    b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)

    return inter_area / (b1_area + b2_area - inter_area)

def box_crop(boxes, labels, crop, img_shape):
    x, y, w, h = map(float, crop)
    im_w, im_h = map(float, img_shape)

    boxes = boxes.copy()
    boxes[:, 0], boxes[:, 2] = (boxes[:, 0] - boxes[:, 2] / 2) * im_w, (
        boxes[:, 0] + boxes[:, 2] / 2) * im_w
    boxes[:, 1], boxes[:, 3] = (boxes[:, 1] - boxes[:, 3] / 2) * im_h, (
        boxes[:, 1] + boxes[:, 3] / 2) * im_h

    crop_box = np.array([x, y, x + w, y + h])
    centers = (boxes[:, :2] + boxes[:, 2:]) / 2.0
    mask = np.logical_and(crop_box[:2] <= centers, centers <= crop_box[2:]).all(
        axis=1)

    boxes[:, :2] = np.maximum(boxes[:, :2], crop_box[:2])
    boxes[:, 2:] = np.minimum(boxes[:, 2:], crop_box[2:])
    boxes[:, :2] -= crop_box[:2]
    boxes[:, 2:] -= crop_box[:2]

    mask = np.logical_and(mask, (boxes[:, :2] < boxes[:, 2:]).all(axis=1))
    boxes = boxes * np.expand_dims(mask.astype('float32'), axis=1)
    labels = labels * mask.astype('float32')
    boxes[:, 0], boxes[:, 2] = (boxes[:, 0] + boxes[:, 2]) / 2 / w, (
        boxes[:, 2] - boxes[:, 0]) / w
    boxes[:, 1], boxes[:, 3] = (boxes[:, 1] + boxes[:, 3]) / 2 / h, (
        boxes[:, 3] - boxes[:, 1]) / h

    return boxes, labels, mask.sum()

# 随机裁剪
def random_crop(img,
                boxes,
                labels,
                scales=[0.3, 1.0],
                max_ratio=2.0,
                constraints=None,
                max_trial=50):
    if len(boxes) == 0:
        return img, boxes

    if not constraints:
        constraints = [(0.1, 1.0), (0.3, 1.0), (0.5, 1.0), (0.7, 1.0),
                       (0.9, 1.0), (0.0, 1.0)]

    img = Image.fromarray(img)
    w, h = img.size
    crops = [(0, 0, w, h)]
    for min_iou, max_iou in constraints:
        for _ in range(max_trial):
            scale = random.uniform(scales[0], scales[1])
            aspect_ratio = random.uniform(max(1 / max_ratio, scale * scale), \
                                          min(max_ratio, 1 / scale / scale))
            crop_h = int(h * scale / np.sqrt(aspect_ratio))
            crop_w = int(w * scale * np.sqrt(aspect_ratio))
            crop_x = random.randrange(w - crop_w)
            crop_y = random.randrange(h - crop_h)
            crop_box = np.array([[(crop_x + crop_w / 2.0) / w,
                                  (crop_y + crop_h / 2.0) / h,
                                  crop_w / float(w), crop_h / float(h)]])

            iou = multi_box_iou_xywh(crop_box, boxes)
            if min_iou <= iou.min() and max_iou >= iou.max():
                crops.append((crop_x, crop_y, crop_w, crop_h))
                break

    while crops:
        crop = crops.pop(np.random.randint(0, len(crops)))
        crop_boxes, crop_labels, box_num = box_crop(boxes, labels, crop, (w, h))
        if box_num < 1:
            continue
        img = img.crop((crop[0], crop[1], crop[0] + crop[2],
                        crop[1] + crop[3])).resize(img.size, Image.LANCZOS)
        img = np.asarray(img)
        return img, crop_boxes, crop_labels
    img = np.asarray(img)
    return img, boxes, labels


# 对原图做 随机改变亮暗、对比度和颜色等 数据增强
srcimg_gtbox = records[0]['gt_bbox']
srcimg_label = records[0]['gt_class']

img_enhance, new_labels, mask = random_crop(srcimg, srcimg_gtbox, srcimg_label)
visualize(srcimg, img_enhance)

2.6.4 随机缩放

# 随机缩放
def random_interp(img, size, interp=None):
    interp_method = [
        cv2.INTER_NEAREST,
        cv2.INTER_LINEAR,
        cv2.INTER_AREA,
        cv2.INTER_CUBIC,
        cv2.INTER_LANCZOS4,
    ]
    if not interp or interp not in interp_method:
        interp = interp_method[random.randint(0, len(interp_method) - 1)]
    h, w, _ = img.shape
    im_scale_x = size / float(w)
    im_scale_y = size / float(h)
    img = cv2.resize(
        img, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=interp)
    return img

# 对原图做 随机缩放
img_enhance = random_interp(srcimg, 640)
visualize(srcimg, img_enhance)

2.6.5 随机翻转

# 随机翻转
def random_flip(img, gtboxes, thresh=0.5):
    if random.random() > thresh:
        img = img[:, ::-1, :]
        gtboxes[:, 0] = 1.0 - gtboxes[:, 0]
    return img, gtboxes


# 对原图做 随机改变亮暗、对比度和颜色等 数据增强
img_enhance, box_enhance = random_flip(srcimg, srcimg_gtbox)
visualize(srcimg, img_enhance)

2.6.6 随机打乱真实框排列顺序

# 随机打乱真实框排列顺序
def shuffle_gtbox(gtbox, gtlabel):
    gt = np.concatenate(
        [gtbox, gtlabel[:, np.newaxis]], axis=1)
    idx = np.arange(gt.shape[0])
    np.random.shuffle(idx)
    gt = gt[idx, :]
    return gt[:, :4], gt[:, 4]

到了这里,关于人工智能学习与实训笔记(二):神经网络之图像分类问题的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能学习与实训笔记(九):Langchain + 百度大模型实战案例

    人工智能专栏文章汇总:人工智能学习专栏文章汇总-CSDN博客 本篇目录 1. LLMChain 2. Sequential Chains SimpleSequentialChain SequentialChain 3. Router Chain 4. Documents Chain 5. Document Loaders(文档加载器) 6. Text Splitter(文本分割器) 7. Vectorstores(向量存储器) 8. Retriever(检索器) 9. Agent(代

    2024年04月13日
    浏览(40)
  • 人工智能学习与实训笔记(十):百度对话大模型ERNIE调用实操

    人工智能专栏文章汇总:人工智能学习专栏文章汇总-CSDN博客 本篇目录 一、直接基于ERNIE Bot Sdk调用 1. SDK基础 1.1 安装EB SDK 1.2 认证鉴权 1.3 EB SDK Hello-World 1.4 多轮对话 1.5 语义向量 1.6 文生图 2. SDK进阶 - 对话补全(Chat Completion) 2.1 通过参数调节响应结果多样性 2.2 流式传输

    2024年02月20日
    浏览(42)
  • 深度学习2.神经网络、机器学习、人工智能

    目录 深度学习、神经网络、机器学习、人工智能的关系 大白话解释深度学习 传统机器学习 VS 深度学习 深度学习的优缺点 4种典型的深度学习算法 卷积神经网络 – CNN 循环神经网络 – RNN 生成对抗网络 – GANs 深度强化学习 – RL 总结 深度学习 深度学习、机器学习、人工智能

    2024年02月11日
    浏览(50)
  • 【AI】了解人工智能、机器学习、神经网络、深度学习

    一、深度学习、神经网络的原理是什么? 深度学习和神经网络都是基于对人脑神经系统的模拟。下面将分别解释深度学习和神经网络的原理。 深度学习的原理: 深度学习是一种特殊的机器学习,其模型结构更为复杂,通常包括很多隐藏层。它依赖于神经网络进行模型训练和

    2024年02月06日
    浏览(55)
  • 人工智能|机器学习——循环神经网络的简洁实现

    循环神经网络的简洁实现 如何使用深度学习框架的高级API提供的函数更有效地实现相同的语言模型。 我们仍然从读取时光机器数据集开始。 定义模型 高级API提供了循环神经网络的实现。 我们构造一个具有256个隐藏单元的单隐藏层的循环神经网络层 rnn_layer 。 事实上,我们

    2024年02月04日
    浏览(55)
  • 头歌平台-人工智能技术应用-实践学习与答案2(补充实训部分)

    注:这一题的输出没有很符合我的预期,所以我干脆直接改了他的print输出,用自己更喜欢的方式输出 注: 这里对字典的统计我引入了defaultdict函数(这个函数是用来新建一个键值对的),算是额外引入了一个算法库使用 测试用例: 一、 针对集体宿舍人员如何科学防控的问

    2024年02月07日
    浏览(62)
  • AI学术交流——“人工智能”和“神经网络学习”

    作者简介:一名云计算网络运维人员、每天分享网络与运维的技术与干货。   座右铭:低头赶路,敬事如仪 个人主页:网络豆的主页​​​​​ 目录 前言 一.人工智能 1.“人工智能之父” 2.达特茅斯会议(人工智能起源) 3.人工智能重要节点 二.神经网络 1.什么是神经网络

    2024年02月09日
    浏览(45)
  • 鱼类识别Python+深度学习人工智能+TensorFlow+卷积神经网络算法

    鱼类识别系统。使用Python作为主要编程语言开发,通过收集常见的30种鱼类(‘墨鱼’, ‘多宝鱼’, ‘带鱼’, ‘石斑鱼’, ‘秋刀鱼’, ‘章鱼’, ‘红鱼’, ‘罗非鱼’, ‘胖头鱼’, ‘草鱼’, ‘银鱼’, ‘青鱼’, ‘马头鱼’, ‘鱿鱼’, ‘鲇鱼’, ‘鲈鱼’, ‘鲍鱼’, ‘鲑

    2024年02月02日
    浏览(74)
  • 【人工智能与机器学习】基于卷积神经网络CNN的猫狗识别

    很巧,笔者在几月前的计算机设计大赛作品设计中也采用了猫狗识别,目前已推国赛评选中 但当时所使用的方法与本次作业要求不太一致,又重新做了一遍,下文将以本次作业要求为主,介绍CNN卷积神经网络实现猫狗识别 猫狗识别和狗品种识别是计算机视觉领域中一个重要

    2024年02月13日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包