深度学习(16)--基于经典网络架构resnet训练图像分类模型

这篇具有很好参考价值的文章主要介绍了深度学习(16)--基于经典网络架构resnet训练图像分类模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

一.项目介绍

二.项目流程详解

2.1.引入所需的工具包

2.2.数据读取和预处理

2.3.加载resnet152模型

2.4.初始化模型

2.5.设置需要更新的参数

2.6.训练模块设置

2.7.再次训练所有层

2.8.测试网络效果

三.完整代码


一.项目介绍

使用PyTorch工具包调用经典网络架构resnet训练图像分类模型,用于分辨不同类型的花

深度学习(16)--基于经典网络架构resnet训练图像分类模型,深度学习,深度学习,python,人工智能,pytorch

深度学习(16)--基于经典网络架构resnet训练图像分类模型,深度学习,深度学习,python,人工智能,pytorch

二.项目流程详解

2.1.引入所需的工具包

import os
import matplotlib.pyplot as plt
# %matplotlib inline
import numpy as np
import torch
from torch import nn
import torch.optim as optim
import torchvision
# pip install torchvision
from torchvision import transforms, models, datasets  # 使用transforms包中的方法进行数据增强,models引入经典网络,datasets包处理数据
# https://pytorch.org/docs/stable/torchvision/index.html
import imageio
import time
import warnings
import random
import sys
import copy
import json
from PIL import Image

2.2.数据读取和预处理

# 指定数据路径
data_dir = './flower_data/'  # 数据父文件夹
# 数据子文件夹
train_dir = data_dir + '/train'
valid_dir = data_dir + '/valid'

# 创建一个字典结构的数据类型来进行图像预处理操作:key - value
data_transforms = {
    # 对训练集的预处理
    'train': transforms.Compose([
        transforms.Resize([96, 96]),  # 卷积神经网络处理的数据大小必须相同,通过Resize来设置

        # 数据增强
        transforms.RandomRotation(45),  # 随机旋转,-45到45度之间随机选
        transforms.CenterCrop(64),  # 从中心开始裁剪,将原本96x96大小的图片数据裁剪为64x64大小的图片数据,可以获取更多的参数
        transforms.RandomHorizontalFlip(p=0.5),  # 随机水平翻转 选择一个概率概率,50%的概率进行水平翻转
        transforms.RandomVerticalFlip(p=0.5),  # 随机垂直翻转,50%的概率进行竖直翻转

        transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1),  # 参数1为亮度,参数2为对比度,参数3为饱和度,参数4为色相
        transforms.RandomGrayscale(p=0.025),  # 概率转换成灰度率,3通道就是R=G=B(三颜色通道转为单一颜色通道,很少进行此处理)

        # 将数据转为Tensor类型
        transforms.ToTensor(),

        # 标准化
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  # 设置均值,标准差,分别对应R、G、B三个颜色通道的三个均值和标准差值,(x-μ)/σ
    ]),

    # 对验证集的预处理(不需要进行数据增强)
    'valid': transforms.Compose([transforms.Resize(256),
                                 transforms.CenterCrop(224),
                                 transforms.ToTensor(),
                                 transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
                                 # 均值和标准差数值的设置和训练集的相同(验证集的数据对我们来说是未知的,不能利用其中的数据再计算出相关的均值和标准差)
                                 ]),
}

batch_size = 128  # 一次性读取的数据数量为128

# 获取数据并进行预处理操作: 通过ImageFolder进行处理,传入两个参数:os.path.join(data_dir,x)获取数据的路径,此处data_dir是父文件夹的路径,x是子文件夹的名字。data_transfroms[x]是对取得的数据进行预处理操作。
# image_datasets也是一个字典数据类型:key-value
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'valid']}

# 设置加载数据的方式,参数分别为:数据,batch_size的大小,是否洗牌
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True) for x in ['train', 'valid']}

# 获取数据的总数,为了后续准确率等的计算做准备
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'valid']}

# 设置标签,也就是类别名
class_names = image_datasets['train'].classes

# 获取标签对应的实际名字,通过外部定义好的json文件来获取实际名字
with open('cat_to_name.json', 'r') as f:
    cat_to_name = json.load(f)

1.创建一个字典结构的数据类型来进行图像预处理操作:key - value。

2.若是输入数据较少,可以通过数据增强来获得更多的特征。

# 数据增强
transforms.RandomRotation(45),  # 随机旋转,-45到45度之间随机选
transforms.CenterCrop(64),  # 从中心开始裁剪,将原本96x96大小的图片数据裁剪为64x64大小的图片数据,可以获取更多的参数
transforms.RandomHorizontalFlip(p=0.5),  # 随机水平翻转 选择一个概率概率,50%的概率进行水平翻转
transforms.RandomVerticalFlip(p=0.5),  # 随 机垂直翻转,50%的概率进行竖直翻转

3.连接一个json配置文件,赋予标签实际名字。

{"21": "fire lily", "3": "canterbury bells", "45": "bolero deep blue", "1": "pink primrose", "34": "mexican aster", "27": "prince of wales feathers", "7": "moon orchid", "16": "globe-flower", "25": "grape hyacinth", "26": "corn poppy", "79": "toad lily", "39": "siam tulip", "24": "red ginger", "67": "spring crocus", "35": "alpine sea holly", "32": "garden phlox", "10": "globe thistle", "6": "tiger lily", "93": "ball moss", "33": "love in the mist", "9": "monkshood", "102": "blackberry lily", "14": "spear thistle", "19": "balloon flower", "100": "blanket flower", "13": "king protea", "49": "oxeye daisy", "15": "yellow iris", "61": "cautleya spicata", "31": "carnation", "64": "silverbush", "68": "bearded iris", "63": "black-eyed susan", "69": "windflower", "62": "japanese anemone", "20": "giant white arum lily", "38": "great masterwort", "4": "sweet pea", "86": "tree mallow", "101": "trumpet creeper", "42": "daffodil", "22": "pincushion flower", "2": "hard-leaved pocket orchid", "54": "sunflower", "66": "osteospermum", "70": "tree poppy", "85": "desert-rose", "99": "bromelia", "87": "magnolia", "5": "english marigold", "92": "bee balm", "28": "stemless gentian", "97": "mallow", "57": "gaura", "40": "lenten rose", "47": "marigold", "59": "orange dahlia", "48": "buttercup", "55": "pelargonium", "36": "ruby-lipped cattleya", "91": "hippeastrum", "29": "artichoke", "71": "gazania", "90": "canna lily", "18": "peruvian lily", "98": "mexican petunia", "8": "bird of paradise", "30": "sweet william", "17": "purple coneflower", "52": "wild pansy", "84": "columbine", "12": "colt's foot", "11": "snapdragon", "96": "camellia", "23": "fritillary", "50": "common dandelion", "44": "poinsettia", "53": "primula", "72": "azalea", "65": "californian poppy", "80": "anthurium", "76": "morning glory", "37": "cape flower", "56": "bishop of llandaff", "60": "pink-yellow dahlia", "82": "clematis", "58": "geranium", "75": "thorn apple", "41": "barbeton daisy", "95": "bougainvillea", "43": "sword lily", "83": "hibiscus", "78": "lotus lotus", "88": "cyclamen", "94": "foxglove", "81": "frangipani", "74": "rose", "89": "watercress", "73": "water lily", "46": "wallflower", "77": "passion flower", "51": "petunia"}

2.3.加载resnet152模型

# 选择经典模型
model_name = 'resnet'  #可选的比较多 ['resnet', 'alexnet', 'vgg', 'squeezenet', 'densenet', 'inception']
# 是否用人家训练好的特征来做
feature_extract = True

# 是否用GPU训练
train_on_gpu = torch.cuda.is_available()

if not train_on_gpu:
    print('CUDA is not available.  Training on CPU ...')
else:
    print('CUDA is available!  Training on GPU ...')

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# 迁移学习:设置模型参数要不要更新
# 对于迁移学习:样本数据较小,则只对输出的全连接层进行参数更新;样本数据中等大小,则部分修改网络中的参数进行训练;样本数据较大,则需要修改整个网络中的参数进行训练
# 传入的参数为model模型和是否需要更新的一个bool值
def set_parameter_requires_grad(model, feature_extracting):
    if feature_extracting:
        for param in model.parameters():
            param.requires_grad = False  # 先将参数的requires_grad值(是否需要进行梯度更新)设置为False,如果需要更新参数,再于后续步骤中将该值改为True

model_ft = models.resnet152()  # 从model中获取152层的resnet模型  
# 存在全局平局池化层,在全连接层前设置该层,将NxN的特征图池化层1x1的特征值,不再需要reshape拉长处理。

此处涉及到一个迁移学习的概念:即使用经典模型中训练好的权重参数作为初始化参数,只根据需求更新部分的参数。

本项目的样本数据较小,所以只对全连接FC层进行参数的更新,即冻结除FC层以外的所有层。

 第一次使用需要下载参数到本地:

深度学习(16)--基于经典网络架构resnet训练图像分类模型,深度学习,深度学习,python,人工智能,pytorch

2.4.初始化模型

根据不同的需求和模型对相关参数进行更改,此处只对resnet的全连接层进行更改

def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
    # 选择合适的模型,不同模型的初始化方法稍微有点区别
    model_ft = None
    input_size = 0
    
    # 输出的全连接层需要更改out_features数量,将其改为项目中的分类数量
    if model_name == "resnet":
        """ Resnet152
        """
        model_ft = models.resnet152(pretrained=use_pretrained)  # pretrained = true 表示使用该网络训练好的权重参数等
        set_parameter_requires_grad(model_ft, feature_extract)  # 将参数中的所有梯度是否更新设置为false

        # 重新定义全连接层(相关参数的更新可以先输出上述使用的网络,在网络中找到参数对应的名字) -- 同时也就重置了requires_grad的值为true,即需要更新梯度
        num_ftrs = model_ft.fc.in_features
        model_ft.fc = nn.Sequential(nn.Linear(num_ftrs, num_classes))
        input_size = 224

    elif model_name == "alexnet":
        """ Alexnet
        """
        model_ft = models.alexnet(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.classifier[6].in_features
        model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
        input_size = 224

    elif model_name == "vgg":
        """ VGG11_bn
        """
        model_ft = models.vgg16(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.classifier[6].in_features
        model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
        input_size = 224

    elif model_name == "squeezenet":
        """ Squeezenet
        """
        model_ft = models.squeezenet1_0(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
        model_ft.num_classes = num_classes
        input_size = 224

    elif model_name == "densenet":
        """ Densenet
        """
        model_ft = models.densenet121(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.classifier.in_features
        model_ft.classifier = nn.Linear(num_ftrs, num_classes)
        input_size = 224

    elif model_name == "inception":
        """ Inception v3
        Be careful, expects (299,299) sized images and has auxiliary output
        """
        model_ft = models.inception_v3(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        # Handle the auxilary net
        num_ftrs = model_ft.AuxLogits.fc.in_features
        model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes)
        # Handle the primary net
        num_ftrs = model_ft.fc.in_features
        model_ft.fc = nn.Linear(num_ftrs,num_classes)
        input_size = 299

    else:
        print("Invalid model name, exiting...")
        exit()

    return model_ft, input_size

1.使用经典模型中训练好的权重参数作为初始化参数

model_ft = models.resnet152(pretrained=use_pretrained)  # pretrained = true 表示使用该网络训练好的权重参数等

2.将所有参数均设置为不需要更新梯度

et_parameter_requires_grad(model_ft, feature_extract)  # 将参数中的所有梯度是否更新设置为false

 3.重新定义全连接层,此操作会使requires_grad的值为重置为true,即需要更新梯度

# 重新定义全连接层(相关参数的更新可以先输出上述使用的网络,在网络中找到参数对应的名字) -- 同时也就重置了requires_grad的值为true,即需要更新梯度
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Sequential(nn.Linear(num_ftrs, num_classes))
input_size = 224

print网络模型查看结构,根据结构更改参数:

print(model_ft)

深度学习(16)--基于经典网络架构resnet训练图像分类模型,深度学习,深度学习,python,人工智能,pytorch

找到最后的全连接层,根据项目要求修改resnet设置的默认参数

avgpool是全局平局池化层,在全连接层前设置该层,将NxN的特征图池化层1x1的特征值,不再需要reshape拉长处理。

2.5.设置需要更新的参数

model_ft, input_size = initialize_model("resnet", 102, True, True)  # 模型初始化函数返回两个值,分别为设置好的模型和input_size,传入的参数分别为网络模型名字,输出类别数,设置所有参数梯度不更新,设置使用该网络训练好的权重参数

# 设置使用GPU计算(将模型放入GPU的cuda当中)
model_ft = model_ft.to(device)  

# 模型保存
filename='checkpoint.pth'

# 是否训练所有层
params_to_update = model_ft.parameters() # 首先获得所有的参数

print("Params to learn:")
if feature_extract:  # 如果feature_extract为true
    params_to_update = []  # 需要更新的参数归零
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:  # 如果需要更新梯度,则将该参数放到params_to_update中,后续通过优化器进行更新(重新定义网络中的结构层时会同时将requires_grad值重置为true)
            params_to_update.append(param)
            print("\t",name)
else:  # 如果feature_extract为false,则输出所有需要更新梯度的参数名字
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            print("\t",name)

2.6.训练模块设置

# 优化器设置
optimizer_ft = optim.Adam(params_to_update, lr=1e-2)  # 参数为需要更新的参数和学习率
# 学习率衰减
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1) # 学习率每7个epoch衰减成原来的1/10

# 损失函数设置
criterion = nn.CrossEntropyLoss()


def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False, filename=filename):
    # 记录当前的时间
    since = time.time()

    # 记录准确率最好的情况
    best_acc = 0
    """
    checkpoint = torch.load(filename)
    best_acc = checkpoint['best_acc']
    model.load_state_dict(checkpoint['state_dict'])
    optimizer.load_state_dict(checkpoint['optimizer'])
    model.class_to_idx = checkpoint['mapping']
    """
    # 把模型放到GPU中
    model.to(device)

    # 保存训练过程中打印的各种参数
    val_acc_history = []
    train_acc_history = []
    train_losses = []
    valid_losses = []

    # 初始学习率
    LRs = [optimizer.param_groups[0]['lr']]

    # 初始化best_model_wts,后续用来保存最好的模型
    best_model_wts = copy.deepcopy(
        model.state_dict())  # model.state_dict()是模型当前的权重参数,通过copy.deepcopy()来初始化best_model_wts

    # 开始epoch循环
    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)

        # 训练和验证
        for phase in ['train', 'valid']:
            if phase == 'train':
                model.train()  # 训练
            else:
                model.eval()  # 验证

            running_loss = 0.0
            running_corrects = 0

            # 把数据都取个遍
            for inputs, labels in dataloaders[phase]:  # dataloaders是一个字典结构的数据,其中的value值调用Dataloader函数,得到输入数据和标签
                # 把数据和标签放到GPU中
                inputs = inputs.to(device)
                labels = labels.to(device)

                # 清零
                optimizer.zero_grad()
                # 只有训练的时候计算和更新梯度
                # 前向传播(调用模型得到预测值)
                with torch.set_grad_enabled(phase == 'train'):
                    if is_inception and phase == 'train':
                        outputs, aux_outputs = model(inputs)
                        loss1 = criterion(outputs, labels)
                        loss2 = criterion(aux_outputs, labels)
                        loss = loss1 + 0.4 * loss2
                    else:  # resnet执行的是这里
                        outputs = model(inputs)
                        loss = criterion(outputs, labels)  # 参数为预测值和真实值

                    _, preds = torch.max(outputs, 1)  # 得到最大的预测值,用于后续计算corrects数

                    # 训练阶段更新权重
                    if phase == 'train':
                        # 反向传播更新权重参数 backward() + step()
                        loss.backward()
                        optimizer.step()

                # 计算损失
                running_loss += loss.item() * inputs.size(0)  # input.size(0)得到的是input第一个维度的大小
                running_corrects += torch.sum(preds == labels.data)  # 预测值和真实值做相等的判断

            # 迭代完一个epoch后,对得到的累加loss和corrects值进行平均计算
            epoch_loss = running_loss / len(dataloaders[phase].dataset)
            epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)

            time_elapsed = time.time() - since
            print('Time elapsed {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
            print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))

            # 得到最好那次的模型
            if phase == 'valid' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())
                state = {
                    'state_dict': model.state_dict(),
                    'best_acc': best_acc,
                    'optimizer': optimizer.state_dict(),
                }
                torch.save(state, filename)  # 保存到本地当中
            # 储存结果到训练集和验证集的对应位置中
            if phase == 'valid':
                val_acc_history.append(epoch_acc)
                valid_losses.append(epoch_loss)
                scheduler.step(epoch_loss)
            if phase == 'train':
                train_acc_history.append(epoch_acc)
                train_losses.append(epoch_loss)

        print('Optimizer learning rate : {:.7f}'.format(optimizer.param_groups[0]['lr']))
        # 保存训练完的学习率
        LRs.append(optimizer.param_groups[0]['lr'])
        print()
        scheduler.step()  # 学习率衰减(累加到一定数量的epoch衰减一次)
    # 结束epoch循环

    # 计算出跑完整个网络花费的时间
    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))

    # 训练完后用最好的一次当做模型最终的结果
    model.load_state_dict(best_model_wts)
    return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs 

# 开始训练
model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer_ft, num_epochs=20, is_inception=(model_name=="inception"))

2.7.再次训练所有层

在只训练全连接层之后,解冻FC层之前的所有层并进行训练(此时全连接层训练的已经比较好)

# 在只训练全连接层之后,解冻FC层之前的所有层并进行训练(此时全连接层训练的已经比较好)
for param in model_ft.parameters():
    param.requires_grad = True

# 再继续训练所有的参数,学习率调小一点
optimizer = optim.Adam(model_ft.parameters(), lr=1e-4)  # 对所有参数进行更新
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

# 损失函数
criterion = nn.CrossEntropyLoss()

# Load the checkpoint

checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']

# 获取之前保存的最好的模型的参数
model_ft.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
#model_ft.class_to_idx = checkpoint['mapping']

model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer, num_epochs=10, is_inception=(model_name=="inception"))

2.8.测试网络效果

# 得到一个batch的测试数据
dataiter = iter(dataloaders['valid'])
images, labels = next(dataiter)

model_ft.eval()

if train_on_gpu:
    output = model_ft(images.cuda())
else:
    output = model_ft(images)

# 得到概率最大的预测值
_, preds_tensor = torch.max(output, 1)

# 在GPU中训练的数据格式为tensor,而后续用matplob画图需要的格式为numpy,所以需要进行一次数据类型的转换:cpu中训练则直接转换numpy类型即可;gpu训练则需要先转换为cpu再转换为numpy类型
preds = np.squeeze(preds_tensor.numpy()) if not train_on_gpu else np.squeeze(preds_tensor.cpu().numpy())


def im_convert(tensor):
    """ 展示数据"""

    # 将数据转到cpu中
    image = tensor.to("cpu").clone().detach()
    # 将数据转为numpy类型
    image = image.numpy().squeeze()
    image = image.transpose(1, 2, 0)  # 通过transpose函数交换数据的维度 此处是由 AxBxC -> BxCxA
    image = image * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))  # 数据还原 (x-μ)/σ ->  x = x*σ + μ
    image = image.clip(0, 1)

    return image

# 设置输出图片格式
fig=plt.figure(figsize=(20, 20))
columns =4
rows = 2

for idx in range (columns*rows):
    ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])  # 通过add_subplot设置布局
    plt.imshow(im_convert(images[idx]))
    # 设置图片的title为预测的类型和实际的类型,并且如果判断正确则为绿色,反之则为红色
    ax.set_title("{} ({})".format(cat_to_name[str(preds[idx])], cat_to_name[str(labels[idx].item())]),
                 color=("green" if cat_to_name[str(preds[idx])]==cat_to_name[str(labels[idx].item())] else "red"))
plt.show()

在GPU中训练的数据格式为tensor,而后续用matplob画图需要的格式为numpy,所以需要进行一次数据类型的转换:cpu中训练则直接转换numpy类型即可;gpu训练则需要先转换为cpu再转换为numpy类型文章来源地址https://www.toymoban.com/news/detail-830622.html

三.完整代码

import os
import matplotlib.pyplot as plt
# %matplotlib inline
import numpy as np
import torch
from torch import nn
import torch.optim as optim
import torchvision
# pip install torchvision
from torchvision import transforms, models, datasets  # 使用transforms包中的方法进行数据增强,models引入经典网络,datasets包处理数据
# https://pytorch.org/docs/stable/torchvision/index.html
import imageio
import time
import warnings
import random
import sys
import copy
import json
from PIL import Image


# 指定数据路径
data_dir = './flower_data/'  # 数据父文件夹
# 数据子文件夹
train_dir = data_dir + '/train'
valid_dir = data_dir + '/valid'

# 创建一个字典结构的数据类型来进行图像预处理操作:key - value
data_transforms = {
    # 对训练集的预处理
    'train': transforms.Compose([
        transforms.Resize([96, 96]),  # 卷积神经网络处理的数据大小必须相同,通过Resize来设置

        # 数据增强
        transforms.RandomRotation(45),  # 随机旋转,-45到45度之间随机选
        transforms.CenterCrop(64),  # 从中心开始裁剪,将原本96x96大小的图片数据裁剪为64x64大小的图片数据,可以获取更多的参数
        transforms.RandomHorizontalFlip(p=0.5),  # 随机水平翻转 选择一个概率概率,50%的概率进行水平翻转
        transforms.RandomVerticalFlip(p=0.5),  # 随 机垂直翻转,50%的概率进行竖直翻转

        transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1),  # 参数1为亮度,参数2为对比度,参数3为饱和度,参数4为色相
        transforms.RandomGrayscale(p=0.025),  # 概率转换成灰度率,3通道就是R=G=B(三颜色通道转为单一颜色通道,很少进行此处理)

        # 将数据转为Tensor类型
        transforms.ToTensor(),

        # 标准化
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  # 设置均值,标准差,分别对应R、G、B三个颜色通道的三个均值和标准差值,(x-μ)/σ
    ]),

    # 对验证集的预处理(不需要进行数据增强)
    'valid': transforms.Compose([transforms.Resize(256),
                                 transforms.CenterCrop(224),
                                 transforms.ToTensor(),
                                 transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
                                 # 均值和标准差数值的设置和训练集的相同(验证集的数据对我们来说是未知的,不能利用其中的数据再计算出相关的均值和标准差)
                                 ]),
}

batch_size = 128  # 一次性读取的数据数量为128

# 获取数据并进行预处理操作: 通过ImageFolder进行处理,传入两个参数:os.path.join(data_dir,x)获取数据的路径,此处data_dir是父文件夹的路径,x是子文件夹的名字。data_transfroms[x]是对取得的数据进行预处理操作。
# image_datasets也是一个字典数据类型:key-value
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'valid']}

# 设置加载数据的方式,参数分别为:数据,batch_size的大小,是否洗牌
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True) for x in ['train', 'valid']}

# 获取数据的总数,为了后续准确率等的计算做准备
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'valid']}

# 设置标签,也就是类别名
class_names = image_datasets['train'].classes

# 获取标签对应的实际名字,通过外部定义好的json文件来获取实际名字
with open('cat_to_name.json', 'r') as f:
    cat_to_name = json.load(f)


# 选择经典模型
model_name = 'resnet'  #可选的比较多 ['resnet', 'alexnet', 'vgg', 'squeezenet', 'densenet', 'inception']
# 是否用人家训练好的特征来做
feature_extract = True

# 是否用GPU训练
train_on_gpu = torch.cuda.is_available()

if not train_on_gpu:
    print('CUDA is not available.  Training on CPU ...')
else:
    print('CUDA is available!  Training on GPU ...')

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# 迁移学习:设置模型参数要不要更新
# 对于迁移学习:样本数据较小,则只对输出的全连接层进行参数更新;样本数据中等大小,则部分修改网络中的参数进行训练;样本数据较大,则需要修改整个网络中的参数进行训练
# 传入的参数为model模型和是否需要更新的一个bool值
def set_parameter_requires_grad(model, feature_extracting):
    if feature_extracting:
        for param in model.parameters():
            param.requires_grad = False  # 先将参数的requires_grad值(是否需要进行梯度更新)设置为False,如果需要更新参数,再于后续步骤中将该值改为True

model_ft = models.resnet152()  # 从model中获取152层的resnet模型
# 存在全局平局池化层,在全连接层前设置该层,将NxN的特征图池化层1x1的特征值,不再需要reshape拉长处理。

# print(model_ft)


def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
    # 选择合适的模型,不同模型的初始化方法稍微有点区别
    model_ft = None
    input_size = 0

    # 输出的全连接层需要更改out_features数量,将其改为项目中的分类数量
    if model_name == "resnet":
        """ Resnet152
        """
        model_ft = models.resnet152(pretrained=use_pretrained)  # pretrained = true 表示使用该网络训练好的权重参数等
        set_parameter_requires_grad(model_ft, feature_extract)  # 将参数中的所有梯度是否更新设置为false

        # 重新定义全连接层(相关参数的更新可以先输出上述使用的网络,在网络中找到参数对应的名字) -- 同时也就重置了requires_grad的值为true,即需要更新梯度
        num_ftrs = model_ft.fc.in_features
        model_ft.fc = nn.Sequential(nn.Linear(num_ftrs, num_classes))
        input_size = 224

    elif model_name == "alexnet":
        """ Alexnet
        """
        model_ft = models.alexnet(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.classifier[6].in_features
        model_ft.classifier[6] = nn.Linear(num_ftrs, num_classes)
        input_size = 224

    elif model_name == "vgg":
        """ VGG11_bn
        """
        model_ft = models.vgg16(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.classifier[6].in_features
        model_ft.classifier[6] = nn.Linear(num_ftrs, num_classes)
        input_size = 224

    elif model_name == "squeezenet":
        """ Squeezenet
        """
        model_ft = models.squeezenet1_0(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1, 1), stride=(1, 1))
        model_ft.num_classes = num_classes
        input_size = 224

    elif model_name == "densenet":
        """ Densenet
        """
        model_ft = models.densenet121(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.classifier.in_features
        model_ft.classifier = nn.Linear(num_ftrs, num_classes)
        input_size = 224

    elif model_name == "inception":
        """ Inception v3
        Be careful, expects (299,299) sized images and has auxiliary output
        """
        model_ft = models.inception_v3(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        # Handle the auxilary net
        num_ftrs = model_ft.AuxLogits.fc.in_features
        model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes)
        # Handle the primary net
        num_ftrs = model_ft.fc.in_features
        model_ft.fc = nn.Linear(num_ftrs, num_classes)
        input_size = 299

    else:
        print("Invalid model name, exiting...")
        exit()

    return model_ft, input_size


model_ft, input_size = initialize_model("resnet", 102, True, True)  # 模型初始化函数返回两个值,分别为设置好的模型和input_size,传入的参数分别为网络模型名字,输出类别数,设置所有参数梯度不更新,设置使用该网络训练好的权重参数

# 设置使用GPU计算(将模型放入GPU的cuda当中)
model_ft = model_ft.to(device)

# 模型保存
filename='checkpoint.pth'

# 是否训练所有层
params_to_update = model_ft.parameters() # 首先获得所有的参数

print("Params to learn:")
if feature_extract:  # 如果feature_extract为true
    params_to_update = []  # 需要更新的参数归零
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:  # 如果需要更新梯度,则将该参数放到params_to_update中,后续通过优化器进行更新(重新定义网络中的结构层时会同时将requires_grad值重置为true)
            params_to_update.append(param)
            print("\t",name)
else:  # 如果feature_extract为false,则输出所有需要更新梯度的参数名字
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            print("\t",name)


# 优化器设置
optimizer_ft = optim.Adam(params_to_update, lr=1e-2)  # 参数为需要更新的参数和学习率
# 学习率衰减
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1) # 学习率每7个epoch衰减成原来的1/10

# 损失函数设置
criterion = nn.CrossEntropyLoss()


def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False, filename=filename):
    # 记录当前的时间
    since = time.time()

    # 记录准确率最好的情况
    best_acc = 0
    """
    checkpoint = torch.load(filename)
    best_acc = checkpoint['best_acc']
    model.load_state_dict(checkpoint['state_dict'])
    optimizer.load_state_dict(checkpoint['optimizer'])
    model.class_to_idx = checkpoint['mapping']
    """
    # 把模型放到GPU中
    model.to(device)

    # 保存训练过程中打印的各种参数
    val_acc_history = []
    train_acc_history = []
    train_losses = []
    valid_losses = []

    # 初始学习率
    LRs = [optimizer.param_groups[0]['lr']]

    # 初始化best_model_wts,后续用来保存最好的模型
    best_model_wts = copy.deepcopy(
        model.state_dict())  # model.state_dict()是模型当前的权重参数,通过copy.deepcopy()来初始化best_model_wts

    # 开始epoch循环
    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)

        # 训练和验证
        for phase in ['train', 'valid']:
            if phase == 'train':
                model.train()  # 训练
            else:
                model.eval()  # 验证

            running_loss = 0.0
            running_corrects = 0

            # 把数据都取个遍
            for inputs, labels in dataloaders[phase]:  # dataloaders是一个字典结构的数据,其中的value值调用Dataloader函数,得到输入数据和标签
                # 把数据和标签放到GPU中
                inputs = inputs.to(device)
                labels = labels.to(device)

                # 清零
                optimizer.zero_grad()
                # 只有训练的时候计算和更新梯度
                # 前向传播(调用模型得到预测值)
                with torch.set_grad_enabled(phase == 'train'):
                    if is_inception and phase == 'train':
                        outputs, aux_outputs = model(inputs)
                        loss1 = criterion(outputs, labels)
                        loss2 = criterion(aux_outputs, labels)
                        loss = loss1 + 0.4 * loss2
                    else:  # resnet执行的是这里
                        outputs = model(inputs)
                        loss = criterion(outputs, labels)  # 参数为预测值和真实值

                    _, preds = torch.max(outputs, 1)  # 得到最大的预测值,用于后续计算corrects数

                    # 训练阶段更新权重
                    if phase == 'train':
                        # 反向传播更新权重参数 backward() + step()
                        loss.backward()
                        optimizer.step()

                # 计算损失
                running_loss += loss.item() * inputs.size(0)  # input.size(0)得到的是input第一个维度的大小
                running_corrects += torch.sum(preds == labels.data)  # 预测值和真实值做相等的判断

            # 迭代完一个epoch后,对得到的累加loss和corrects值进行平均计算
            epoch_loss = running_loss / len(dataloaders[phase].dataset)
            epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)

            time_elapsed = time.time() - since
            print('Time elapsed {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
            print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))

            # 得到最好那次的模型
            if phase == 'valid' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())
                state = {
                    'state_dict': model.state_dict(),
                    'best_acc': best_acc,
                    'optimizer': optimizer.state_dict(),
                }
                torch.save(state, filename)  # 保存到本地当中
            # 储存结果到训练集和验证集的对应位置中
            if phase == 'valid':
                val_acc_history.append(epoch_acc)
                valid_losses.append(epoch_loss)
                scheduler.step(epoch_loss)
            if phase == 'train':
                train_acc_history.append(epoch_acc)
                train_losses.append(epoch_loss)

        print('Optimizer learning rate : {:.7f}'.format(optimizer.param_groups[0]['lr']))
        # 保存训练完的学习率
        LRs.append(optimizer.param_groups[0]['lr'])
        print()
        scheduler.step()  # 学习率衰减(累加到一定数量的epoch衰减一次)
    # 结束epoch循环

    # 计算出跑完整个网络花费的时间
    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))

    # 训练完后用最好的一次当做模型最终的结果
    model.load_state_dict(best_model_wts)
    return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs

# 开始训练
model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer_ft, num_epochs=20, is_inception=(model_name=="inception"))

# 在只训练全连接层之后,解冻FC层之前的所有层并进行训练(此时全连接层训练的已经比较好)
for param in model_ft.parameters():
    param.requires_grad = True

# 再继续训练所有的参数,学习率调小一点
optimizer = optim.Adam(model_ft.parameters(), lr=1e-4)  # 对所有参数进行更新
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

# 损失函数
criterion = nn.CrossEntropyLoss()

# Load the checkpoint

checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']

# 打印检查parameter是否匹配
# print(model_ft.state_dict().keys())
# print(optimizer.state_dict()["state"].keys())

# 获取之前保存的最好的模型的参数
model_ft.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
# model_ft.class_to_idx = checkpoint['mapping']

model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer, num_epochs=10, is_inception=(model_name=="inception"))


# 得到一个batch的测试数据
dataiter = iter(dataloaders['valid'])
images, labels = next(dataiter)

model_ft.eval()

if train_on_gpu:
    output = model_ft(images.cuda())
else:
    output = model_ft(images)

# 得到概率最大的预测值
_, preds_tensor = torch.max(output, 1)

# 在GPU中训练的数据格式为tensor,而后续用matplob画图需要的格式为numpy,所以需要进行一次数据类型的转换:cpu中训练则直接转换numpy类型即可;gpu训练则需要先转换为cpu再转换为numpy类型
preds = np.squeeze(preds_tensor.numpy()) if not train_on_gpu else np.squeeze(preds_tensor.cpu().numpy())


def im_convert(tensor):
    """ 展示数据"""

    # 将数据转到cpu中
    image = tensor.to("cpu").clone().detach()
    # 将数据转为numpy类型
    image = image.numpy().squeeze()
    image = image.transpose(1, 2, 0)  # 通过transpose函数交换数据的维度 此处是由 AxBxC -> BxCxA
    image = image * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))  # 数据还原 (x-μ)/σ ->  x = x*σ + μ
    image = image.clip(0, 1)

    return image

# 设置输出图片格式
fig=plt.figure(figsize=(20, 20))
columns =4
rows = 2

for idx in range (columns*rows):
    ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])  # 通过add_subplot设置布局
    plt.imshow(im_convert(images[idx]))
    # 设置图片的title为预测的类型和实际的类型,并且如果判断正确则为绿色,反之则为红色
    ax.set_title("{} ({})".format(cat_to_name[str(preds[idx])], cat_to_name[str(labels[idx].item())]),
                 color=("green" if cat_to_name[str(preds[idx])]==cat_to_name[str(labels[idx].item())] else "red"))

plt.savefig('result.png')

到了这里,关于深度学习(16)--基于经典网络架构resnet训练图像分类模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【深度学习】了解残差网 ResNet 和 ResNeXt 的架构

            了解和实现 ResNet 和 ResNeXt 的架构以实现最先进的图像分类:从Microsoft到 Facebook [第 1 部分], 在这篇由两部分组成的博客文章中,我们将探讨残差网络。更具体地说,我们将讨论Microsoft研究和Facebook AI研究发布的三篇论文,最先进的图像分类网络 - ResNet和ResNeXt架构

    2024年02月17日
    浏览(38)
  • 经典神经网络论文超详细解读(五)——ResNet(残差网络)学习笔记(翻译+精读+代码复现)

    《Deep Residual Learning for Image Recognition》这篇论文是何恺明等大佬写的,在深度学习领域相当经典,在2016CVPR获得best paper。今天就让我们一起来学习一下吧! 论文原文:https://arxiv.org/abs/1512.03385 前情回顾: 经典神经网络论文超详细解读(一)——AlexNet学习笔记(翻译+精读)

    2024年02月08日
    浏览(47)
  • 深度学习——残差网络(ResNet)

    随着卷积神经网络的发展和普及,我们了解到增加神经网络的层数可以提高模型的训练精度和泛化能力,但简单地增加网络的深度,可能会出现 “梯度弥散” 和 “梯度爆炸” 等问题。传统对应的解决方案则是 权重的初始化 (normalized initializatiton)和 批标准化 (batch normlizatio

    2024年02月06日
    浏览(53)
  • 【深度学习】ResNet网络详解

    参考 ResNet论文: https://arxiv.org/abs/1512.03385 本文主要参考视频:https://www.bilibili.com/video/BV1T7411T7wa https://www.bilibili.com/video/BV14E411H7Uw 结构概况 ResNet的网络结构图如图所示: 这是ResNet不同层数的网络 结构图。 可以看到,结构大差不差。不论是18层、34层、50层、还是101层、152层。

    2024年01月16日
    浏览(41)
  • 残差网络(ResNet) -深度学习(Residual Networks (ResNet) – Deep Learning)

    在第一个基于cnn的架构(AlexNet)赢得ImageNet 2012比赛之后,每个随后的获胜架构都在深度神经网络中使用更多的层来降低错误率。这适用于较少的层数,但当我们增加层数时,深度学习中会出现一个常见的问题,称为消失/爆炸梯度。这会导致梯度变为0或太大。因此,当我们增加

    2024年02月15日
    浏览(44)
  • 【深度学习实验】循环神经网络(四):基于 LSTM 的语言模型训练

    目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入必要的工具包 1. RNN与梯度裁剪 2. LSTM模型 3. 训练函数 a. train_epoch b. train 4. 文本预测 5. GPU判断函数 6. 训练与测试 7. 代码整合         经验是智慧之父,记忆是智慧之母。 ——谚语    

    2024年02月07日
    浏览(47)
  • 大数据深度学习ResNet深度残差网络详解:网络结构解读与PyTorch实现教程

    本文深入探讨了深度残差网络(ResNet)的核心概念和架构组成。我们从深度学习和梯度消失问题入手,逐一解析了残差块、初始卷积层、残差块组、全局平均池化和全连接层的作用和优点。文章还包含使用PyTorch构建和训练ResNet模型的实战部分,带有详细的代码和解释。 深度

    2024年01月18日
    浏览(48)
  • 深度学习实战——卷积神经网络/CNN实践(LeNet、Resnet)

          忆如完整项目/代码详见github: https://github.com/yiru1225 (转载标明出处 勿白嫖 star for projects thanks) 本系列博客重点在深度学习相关实践(有问题欢迎在评论区讨论指出,或直接私信联系我)。 第一章  深度学习实战——不同方式的模型部署(CNN、Yolo)_如何部署cnn_

    2023年04月11日
    浏览(47)
  • PyTorch 深度学习实战 | 基于 ResNet 的花卉图片分类

    “工欲善其事,必先利其器”。如果直接使用 Python 完成模型的构建、导出等工作,势必会耗费相当多的时间,而且大部分工作都是深度学习中共同拥有的部分,即重复工作。所以本案例为了快速实现效果,就直接使用将这些共有部分整理成框架的 TensorFlow 和 Keras 来完成开发

    2023年04月09日
    浏览(48)
  • 【Python机器学习】实验16 卷积、下采样、经典卷积网络

    tf.Tensor: id=8263, shape=(2, 8), dtype=float32, numpy= array([[0.16938789, 0. , 0.08883161, 0.14095941, 0.34751543, 0.353898 , 0. , 0.13356908], [0. , 0. , 0.48546872, 0.37623546, 0.5447475 , 0.21755993, 0.40121362, 0. ]], dtype=float32) tf.Tensor: id=8296, shape=(4, 5), dtype=float32, numpy= array([[0. , 0. , 0. , 0.14286758, 0. ], [0. , 2.2727172 , 0. , 0

    2024年02月11日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包