Kafka系列(一)【消息队列、Kafka的基本概念、Kafka的工作机制、Kafka可满足的需求、Kafka的特性、Kafka的应用场景】

这篇具有很好参考价值的文章主要介绍了Kafka系列(一)【消息队列、Kafka的基本概念、Kafka的工作机制、Kafka可满足的需求、Kafka的特性、Kafka的应用场景】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

转自《Kafka并不难学!入门、进阶、商业实战》

一、消息队列

1. 消息队列的来源

在高并发的应用场景中,由于来不及同步处理请求,接收到的请求往往会发生阻塞。
例如,大量的插入、更新请求同时到达数据库,这会导致行或表被锁住,最后会因为请求堆积过多而触发“连接数过多的异常”(TooMany Connections)错误。
因此,在高并发的应用场景中需要一个缓冲机制,而消息队列则可以很好地充当这样一个角色。消息队列通过异步处理请求来缓解系统的压力。

2. 什么是消息队列

“消息队列”(Message Queue,MQ)从字面来理解,是一个队列,拥有先进先出(FirstInputFirst Output,FIFO)的特性。它主要用于不同进程或线程之间的通信,用来处理一系列的输入请求。
消息队列采用异步通信机制。即,消息的发送者和接收者无须同时与消息队列进行数据交互,消息会一直保存在队列中,直至被接收者读取。每一条消息记录都包含详细的数据说明,包括数据产生的时间、数据类型、特定的输入参数。

3. 消息队列主要有哪些作用

在实际的应用中,消息队列主要有以下作用。

  1. 应用解耦:多个应用可通过消息队列对相同的消息进行处理,应用之间相互独立,互不影响;
  2. 异步处理:相比于串行和并行处理,异步处理可以减少处理的时间;(不需要等待响应)
  3. 数据限流:流量高峰期,可通过消息队列来控制流量,避免流量过大而引起应用系统崩溃;
  4. 消息通信:实现点对点消息队列或聊天室等。

二、Kafka的基本概念

Kafka 是一个分布式实时数据流平台,可独立部署在单台服务器上,也可部署在多台服务器上构成集群。它提供了发布与订阅功能。用户可以发送数据到 Kafka 集群中,也可以从Kafka集群中读取数据。

代理、生产者、消费者、消费者组

  1. 代理 (Broker)

在Kafka集群中,一个Kafka进程(Kafka进程又称为 Kafka实例)被称为一个代理(Broker)节点。代理节点是消息队列中的一个常用概念。通常,在部署分布式 Kafka 集群时,一台服务器上部署一个Kafka 实例。

  1. 生产者 (Producer)

在Kafka 系统中,生产者通常被称为 Producer。
Producer 将消息记录发送到 Kafka 集群指定的主题(Topic)中进行存储,同时生产者(Producer)也能通过自定义算法决定将消息记录发送到哪个分区(Partition)。

  1. 消费者(Consumer)

消费者(Consumer)从 Kafka 集群指定的主题(Topic)中读取消息记录。在读取主题数据时,需要设置消费组名(Groupd)。如果不设置,则 Kafka 消费者会默认生成一个消费组名称。

  1. 消费者组(Consumer Group)

消费者程序在读取 Kafka 系统主题 (Topic)中的数据时,通常会使用多个线程来执行。一个消费者组可以包含一个或多个消费者程序,使用多分区和多线程模式可以极大提高读取数据的效率。

主题、分区、副本、记录

  1. 主题 (Topic)

Kafka 系统通过主题来区分不同业务类型的消息记录。
例如,用户登录数据存储在主题 A 中,用户充值记录存储在主题 B 中,则如果应用程序只订阅了主题A,而没有订阅主题 B,那该应用程序只能读取主题A 中的数据。

  1. 分区(Partition)

每一个主题(Topic)中可以有一个或者多个分区(Partition)。在 Kafka 系统的设计思想中,分区是基于物理层面上的,不同的分区对应着不同的数据文件。
Kafka 通过分区(Partition)来支持物理层面上的并发读写,以提高Kafka 集群的吞吐量
每个主题(Topic)下的各分区(Partition)中存储数据的具体流程Kafka系列(一)【消息队列、Kafka的基本概念、Kafka的工作机制、Kafka可满足的需求、Kafka的特性、Kafka的应用场景】,消息队列(Kafka),kafka,linq,分布式每个分区(Partition)内部的消息记录是有序的,每个消息都有一个连续的偏移量序号(Offset)
一个分区只对应一个代理节点 (Broker),一个代理节点可以管理多个分区。

  1. 副本(Replication)

在 Kafka 系统中,每个主题 (Topic)在创建时会要求指定它的副本数,默认是 1。通过副本(Replication)机制来保证 Kafka 分布式集群数据的高可用性。

  1. 记录(Record)

被实际写入到 Kafka 集群并且可以被消费者应用程序读取的数据,被称为记录(Record)。每条记录包含一个键(Key)、值 (Value)和时间戳(Timestamp)

三、了解 Kafka的工作机制-生产消息/消费消息

Kafka 作为一个消息队列系统,其核心机制就是生产消息和消费消息。
在Kafka 基本结构中,生产者(Producer)组件和消费者(Consumer)组件互不影响,但又是必须存在的。缺少生产者和消费者中的任意一方,整个Kafka 消息队列系统将是不完整的。

  • 生产者 (Producer)负责写入消息数据。将审计日志、服务日志、数据库、移动 App 日志,以及其他类型的日志主动推送到 Kafka 集群进行存储。

  • 消费者(Consumer)负责读取消息数据。例如,通过 Hadoop 的应用接口、Spark 的应用接口、Storm 的应用接口、ElasticSearch 的应用接口,以及其他自定义服务的应用接口,主动拉取 Kafka 集群中的消息数据

另外,Kafka 是一个分布式系统,用 Zookeeper 来管理、协调 Kafka集群的各个代理(Broker)节点。当 Kafka 集群中新添加了一个代理节点,或者某一台代理节点出现故障时,Zookeeper服务将会通知生产者应用程序和消费者应用程序去其他的正常代理节点读写。

四、Kafka可满足的需求

  1. 高吞吐量

日常生活中所使用的支付宝、微信、QQ 这类软件的用户量非常庞大,每秒产生的数据流量也非常巨大。面对这类场景,若要实时地聚合消息日志,必须具有高吞吐量才能支持高容量事件流。

  1. 高可用队列

分布式消息队列系统都具有异步处理机制。另外,分布式消息队列系统一般都拥有处理大量数据积压能力,以便支持其他离线系统的定期数据加载。

  1. 低延时

实时应用场景对时延的要求极为严格。耗时越少,则结果越理想。这意味着,设计出来的系统必须拥有低延迟处理能力。

  1. 分布式机制

系统还需具有支持分区、分布式、能实时处理消息等特点,并能在机器出现故障时保证数据不丢失。

五、Kafka的特性

  1. 异步生产数据

从Kafka 0.8.2起,生产者 (Producer)写数据时不再区分同步和异步,所有的操作请求均以异步的方式发送,这样大大地提高了客户端写数据的效率。
异步方式将数据批量的发送到 Kafka 不同的代理 (Broker)节点因此也减少了 Kafka 服务端的资源开销。这种方式在与 Kafka 系统进行网络通信时,能够有效地减少等待时间。

  1. 偏移量迁移
    Kafka系列(一)【消息队列、Kafka的基本概念、Kafka的工作机制、Kafka可满足的需求、Kafka的特性、Kafka的应用场景】,消息队列(Kafka),kafka,linq,分布式
    Kafka系列(一)【消息队列、Kafka的基本概念、Kafka的工作机制、Kafka可满足的需求、Kafka的特性、Kafka的应用场景】,消息队列(Kafka),kafka,linq,分布式
    Kafka系列(一)【消息队列、Kafka的基本概念、Kafka的工作机制、Kafka可满足的需求、Kafka的特性、Kafka的应用场景】,消息队列(Kafka),kafka,linq,分布式

六、Kafka的场景

Kafka系列(一)【消息队列、Kafka的基本概念、Kafka的工作机制、Kafka可满足的需求、Kafka的特性、Kafka的应用场景】,消息队列(Kafka),kafka,linq,分布式文章来源地址https://www.toymoban.com/news/detail-830730.html

到了这里,关于Kafka系列(一)【消息队列、Kafka的基本概念、Kafka的工作机制、Kafka可满足的需求、Kafka的特性、Kafka的应用场景】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 大数据 - Kafka系列《一》- Kafka基本概念

    目录 🐶1.1 什么是kafka 🐶1.2 Kafka可以用来做什么 🐶1.3 kafka的特点 🥙1. 高吞吐量、低延迟 🥙2. 可扩展性 🥙3. 持久性、可靠性 🥙4. 容错性 🥙5. 高并发 🐶1.4 Kafka的基本架构 1. 🥙Producer:生产者 2. 🥙Broker:中间组件,存储数据 Topic:主题。类似于表的概念 partition:分区。

    2024年01月20日
    浏览(39)
  • 【Spring云原生系列】Spring RabbitMQ:异步处理机制的基础--消息队列 原理讲解+使用教程

    🎉🎉 欢迎光临,终于等到你啦 🎉🎉 🏅我是 苏泽 ,一位对技术充满热情的探索者和分享者。🚀🚀 🌟持续更新的专栏 《Spring 狂野之旅:从入门到入魔》 🚀 本专栏带你从Spring入门到入魔   这是苏泽的个人主页可以看到我其他的内容哦👇👇 努力的苏泽 http://suzee.blog.

    2024年03月15日
    浏览(53)
  • 【Kafka】消息队列Kafka基础

      消息队列,经常缩写为MQ。从字面上来理解,消息队列是一种用来存储消息的队列。例如Java中的队列:   上述代码,创建了一个队列,先往队列中添加了一个消息,然后又从队列中取出了一个消息。这说明了队列是可以用来存取消息的。我们可以简单理解消息队列就是

    2024年02月16日
    浏览(50)
  • 【Kafka】消息队列Kafka进阶

    生产者分区写入策略 生产者写入消息到 topic,Kafka 将依据不同的策略将数据分配到不同的分区中。 轮询分区策略 随机分区策略 按key分区分配策略 自定义分区策略 轮询策略   默认的策略,也是使用最多的策略,可以最大限度保证所有消息平均分配到一个分区。如果在生产

    2024年02月15日
    浏览(42)
  • 消息队列之RabbitMQ工作模式

    提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 消息队列之RabbitMQ工作模式 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 提示:这里可以添加本文要记录的大概内容: 在这篇博客中,我将深入探讨 RabbitMQ 的工作模式,带你

    2024年01月18日
    浏览(56)
  • RabbitMQ消息队列的工作模式

    官方文档地址:https://www.rabbitmq.com/getstarted.html 工作模式其实就是消息队列分发消息的路由方式。 RabbitMQ常用的几种工作模式: 简单模式 WorkQueues工作队列模式 PubSub生产者/PubSub消费者模式 Routing路由模式 Topics通配符模式 发布/订阅模式(Publish/Subscribe):该模式用于一对多的

    2024年02月15日
    浏览(46)
  • 消息队列——rabbitmq的不同工作模式

    目录 Work queues 工作队列模式  Pub/Sub 订阅模式 Routing路由模式 Topics通配符模式   工作模式总结 C1和C2属于竞争关系,一个消息只有一个消费者可以取到。  代码部分只需要用两个消费者进程监听同一个队里即可。 两个消费者呈现竞争关系。 用一个生产者推送10条消息 两个监

    2024年02月16日
    浏览(44)
  • 【期末不挂科-单片机考前速过系列P7】(第七章:11题速过串行口基本概念/结构/工作方式/双机通信例题)经典例题盘点(带图解析)

    前言 大家好吖,欢迎来到 YY 滴单片机系列 ,热烈欢迎! 本章主要内容面向接触过单片机的老铁 主要内容含: 欢迎订阅 YY 滴C++专栏!更多干货持续更新!以下是传送门! YY的《C++》专栏 YY的《C++11》专栏 YY的《Linux》专栏 YY的《数据结构》专栏 YY的《C语言基础》专栏 YY的《

    2024年02月02日
    浏览(60)
  • Kafka消息队列实现消息的发送和接收

    消息在Kafka消息队列中发送和接收过程如下图所示: 消息生产者Producer产生消息数据,发送到Kafka消息队列中,一台Kafka节点只有一个Broker,消息会存储在Kafka的Topic(主题中),不同类型的消息数据会存储在不同的Topic中,可以利用Topic实现消息的分类,消息消费者Consumer会订阅

    2024年02月11日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包