【算法手札】深入理解宽度遍历(bfs)和深度遍历(dfs)搜索

这篇具有很好参考价值的文章主要介绍了【算法手札】深入理解宽度遍历(bfs)和深度遍历(dfs)搜索。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

   算法的重要性不言而喻,现在我们的生活也已经离不开各种算法,一个好的算法能大大提高程序的运行效率,是学习编程的一个重要模块,而遍历算法也是算法里的一个大的模块,今天我们一起来学习一下深度遍历算法(depth first search)和 广度优先遍历(broad first search)。我们通过几道经典的分析例题来理解这两种算法。

宽度遍历,算法手札,蓝桥杯,C++初阶,算法,深度优先,宽度优先


提示:以下是本篇文章正文内容,下面案例可供参考

一、宽度遍历搜索(bfs)

1.概念和算法思想

宽度优先搜索算法(又称广度优先搜索)是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型。Dijkstra单源最短路径算法和Prim最小生成树算法都采用了和宽度优先搜索类似的思想。其别名又叫BFS,属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。换句话说,它并不考虑结果的可能位置,彻底地搜索整张图,直到找到结果为止。

2.红与黑(牛客网)

2.1题目链接红与黑

2.2分析题面
宽度遍历,算法手札,蓝桥杯,C++初阶,算法,深度优先,宽度优先
宽度遍历,算法手札,蓝桥杯,C++初阶,算法,深度优先,宽度优先
题意:输入对应的两个数m,和n,m是行, n是列,输入一个char类型的图,遍历这个图,找到‘@‘这个点,并且从’@‘点开始计算能走到的’.'字符的总个数。
算法分析:flood fill (大水漫灌算法)
bfs算法适合做最短路的问题,遍历顺序,从’@'这个点往上右下左四个方向去搜索,所以我们可以设置两个方向数组,就可以实现。bfs的实现还要依靠队列来完成,一般是默认是STL库里提供的队列就可以了。
宽度遍历,算法手札,蓝桥杯,C++初阶,算法,深度优先,宽度优先
这道题的实现思路:
宽度遍历,算法手札,蓝桥杯,C++初阶,算法,深度优先,宽度优先
代码示例:

#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;
typedef pair<int, int> pii;
#define x first //这样子代码会比较短
#define y second 
const int N = 25;
char g[N][N]; //存地图
int st[N][N];
int m, n; //m是列, n是行
int bfs(int sx, int sy)
{
    queue<pii> q; // 创造一个pii类型的队列,因为是二维数组
    q.push({sx, sy});
    st[sx][sy] = '#';// 标记为为障碍物
    int res = 0; //计算总共能走的数有多少
    int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
    while(q.size())
    {
        auto t = q.front();
        q.pop();
        res++;
        for(int i = 0; i < 4; i++)
        {
            int a = t.x + dx[i], b = t.y + dy[i]; //这个是新的点
            if(a < 0 || a >= n || b < 0 || b >= m || g[a][b] != '.' ) continue;
            g[a][b] ='#';
            q.push({a, b});
        }
    }
    return res;
}

int main ()
{
    while(cin >> m >> n, n || m)
    {
        for(int i = 0; i < n; i++) cin >> g[i];  //这样就把二维数组存进来了
        int a, b;
        for(int i = 0; i < n; i++)
            for(int j =  0; j < m; j ++)
            if(g[i][j] == '@') //找到@这个点的下标
            {
                a = i;
                b = j;
            }
        cout << bfs(a, b) << endl;
    }
    
    return 0;
}

3.走迷宫(牛客网)

3.1题目链接走迷宫

3.2分析题面
宽度遍历,算法手札,蓝桥杯,C++初阶,算法,深度优先,宽度优先
题意:入口固定在第一行第二列,出口固定在最后一行第九列,其中’#‘代表墙, '.'代表通路,算从入口到出口的最少步数u,就相当于是最短路,也能用bfs解。
算法分析:flood fill (大水漫灌算法)
解法与上题基本没区别,但是要注意bfs函数的实现。

宽度遍历,算法手札,蓝桥杯,C++初阶,算法,深度优先,宽度优先
代码示例:

#include<iostream>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
typedef pair<int, int> PII;
#define x first
#define y second
const int N = 11;
char g[N][N]; //存图
int d[N][N]; //存路径


int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0 ,-1};
int bfs()
{
    queue<PII> q;
    memset(d, -1, sizeof d);
    d[0][1] = 0;
    q.push({0, 1});
    while(q.size())
    {
        auto t = q.front();//取对头
        q.pop();
        for(int i = 0; i < 4; i++)
        {
            int a = t.x + dx[i], b = t.y + dy[i];
            if(a >= 0 && a < 10 && b < 10 && b >= 0 && g[a][b] == '.' && d[a][b] == -1)
            {
                d[a][b] = d[t.x][t.y] + 1;
                q.push({a, b});
            }
        }
    }
    
    return d[9][8];
}

int main ()
{
    while(cin >> g[0][0])
    {
        for(int i = 0; i < 10; i++)
        {
              for(int j = 0; j < 10; j++)
            {
                if(i == 0 && j == 0) continue;
                cin >> g[i][j];
            }
        }
            cout << bfs() << endl;
    }   
    
    return 0;
}

二、深度搜索搜索(dfs)

1.概念和算法思想

概念:事实上,深度优先搜索属于图算法的一种,英文缩写为DFS即Depth First Search.其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次。
算法思想:
深度优先遍历图的方法是,从图中某顶点v出发:
(1)访问顶点v;
(2)依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问;
(3)若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。 当然,当人们刚刚掌握深度优先搜索的时候常常用它来走迷宫.事实上我们还有别的方法,那就是广度优先搜索(BFS).

2.排列数字(acwing)

2.1分析题面
宽度遍历,算法手札,蓝桥杯,C++初阶,算法,深度优先,宽度优先
给定一个整数n,给出1 - n的全排列。
算法分析: dfs算法,顺序很重要
宽度遍历,算法手札,蓝桥杯,C++初阶,算法,深度优先,宽度优先
代码示例:

#include<algorithm>
#include<iostream>
using namespace std;

const int N = 10;
int p[N]; //存每一次的数
bool st[N]; //标记是否走过
int n; //n设置为全局会更好
int dfs(int u)
{
    if(u == n) //如果u的大小等于n,此时就可以输出p数组
    {
        for(int i = 0; i < n; i++) printf("%d ", p[i]);
        puts("");
    }
    for(int i =  1; i <= n; i++)
    {
        if(!st[i])//如果i这个点没有被标记过,就可以进来
        {
            p[u] = i;  //p[u] 这个点i
            st[i] = true; //标记
            dfs(u + 1); //继续往深处递归
            st[i] = false; //恢复现场
        } 
    }
    
}
int main ()
{
    cin >> n;
    
    dfs(0);
    
    return 0;
}

3.红与黑(牛客网)(dfs)

3.1分析题面
宽度遍历,算法手札,蓝桥杯,C++初阶,算法,深度优先,宽度优先
宽度遍历,算法手札,蓝桥杯,C++初阶,算法,深度优先,宽度优先
题意: 输入对应的两个数m,和n,m是行, n是列,输入一个char类型的图,遍历这个图,找到‘@‘这个点,并且从’@‘点开始计算能走到的’.'字符的总个数。
3.2算法分析
宽度遍历,算法手札,蓝桥杯,C++初阶,算法,深度优先,宽度优先

代码示例:

#include<iostream>
using namespace std;
const int N = 25;
int n, m;
char g[N][N];
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};//枚举四个方向
int dfs(int x, int y)
{
    int res = 1;
    g[x][y] = '#';//表示这个点已经走过了
    for(int i = 0; i < 4; i++)
    {
        int a = x + dx[i], b = y + dy[i];
        if(a < 0 || a >= n || b < 0 || b >= m || g[a][b] == '#') continue;//枚举边界条件
        res += dfs(a, b);
    }
    return res;
}
int main ()
{
    while(cin >> m >> n, n || m)
    {
        for(int i = 0; i < n; i++) cin >> g[i];
        int x, y;
        
        for(int i = 0; i < n; i++)
            for(int j = 0; j < m; j++)
            if(g[i][j] == '@')
            {
                x = i;
                y = j;
            }
        cout << dfs(x, y) << endl;
    }
    
    return 0;
}

4、n皇后问题

4.1分析题面宽度遍历,算法手札,蓝桥杯,C++初阶,算法,深度优先,宽度优先
宽度遍历,算法手札,蓝桥杯,C++初阶,算法,深度优先,宽度优先
n个皇后放在n x n的国际象棋上,就是每一行要放一个皇后,但是任意一个皇后不能处在同一行和同一列和同一斜线上。

4.2算法分析(dfs)
使用类似全排列的方式,把符合条件的选出来。
宽度遍历,算法手札,蓝桥杯,C++初阶,算法,深度优先,宽度优先

代码示例:

#include<iostream>
#include<algorithm>
using namespace std;

const int N = 20;
char g[N][N];//存图
bool col[N], zx[N], yx[N];//col代表行, zx代表左斜线。yx代表右斜线
int n;
void dfs(int u)
{
    if(n == u)//如果n == u表示此时g数组里已经有结果了
    {
        for(int i = 0; i < n; i++) puts(g[i]);
        puts("");
        return;
    }
    for(int i = 0; i < n; i++)
    {
        if(!col[i] && !zx[u + i] && !yx[n - u + i])//如果行,左斜线,右斜线都没被标记过
        {
            g[u][i] = 'Q';
            col[i] = zx[u + i] = yx[n - u + i] = true;
            dfs(u + 1);
            col[i] = zx[u + i] = yx[n - u + i] = false;
            g[u][i] = '.'; //恢复现场
        }
    }
}
int main ()
{
    cin >> n;
    for(int i = 0; i < n; i++)
        for(int j = 0; j < n; j++)
        g[i][j] = '.';
    dfs(0);
    return 0;
}

三、总结

宽度遍历,算法手札,蓝桥杯,C++初阶,算法,深度优先,宽度优先
    本文总结了几道bfs和dfs的经典例题, 比如红与黑这道题,我们用dfs和bfs两种方法去解决,算法是一个重要的学习模块,需要我们多刷题和总结,希望大家读后能够有所收获!!!文章来源地址https://www.toymoban.com/news/detail-831624.html

到了这里,关于【算法手札】深入理解宽度遍历(bfs)和深度遍历(dfs)搜索的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 算法:BFS宽度优先遍历

    本篇总结的是BFS算法,BFS算法相比起DFS算法来说还是比较简单的 这里提供一种双端队列的做法,也可以在合适的层数逆序

    2024年02月21日
    浏览(57)
  • BFS算法(宽度优先搜索)超强解析 BFS迷宫问题图文详解 DFS与BFS的区别

      前情回顾:DFS练习-迷宫(最短路径)问题详解 一波三折 图片+文字 以及你需要会的基础:手搓数据结构之队列queue C/C++语言版(BFS算法预备知识) 广度优先搜索(Breadth First Search)简称广搜或者 BFS, 是遍历图存储结构的一种算法 。 BFS的原理是 “逐层扩散” ,从起点出发

    2024年02月22日
    浏览(47)
  • 【数据结构】图的遍历:广度优先(BFS),深度优先(DFS)

    目录 1、广度优先(BFS) 算法思想  广度优先生成树  知识树  代码实现  2、深度优先(DFS) 算法思想  深度优先生成树 知识树  代码实现           图的广度优先遍历(BFS)是一种遍历图的算法,其思想是从起始顶点开始遍历图,先访问起始顶点的所有直接邻居,然

    2024年02月04日
    浏览(66)
  • 对无向图进行邻接矩阵的转化,并且利用DFS(深度优先)和BFS(广度优先)算法进行遍历输出, 在邻接矩阵存储结构上,完成最小生成树的操作。

    目录 一 实验目的 二 实验内容及要求 实验内容: 实验要求: 三 实验过程及运行结果 一 算法设计思路 二 源程序代码 三、截图 四 调试情况、设计技巧及体会 1.掌握图的相关概念。 2.掌握用邻接矩阵和邻接表的方法描述图的存储结构。 3.掌握图的深度优先搜索和广度优

    2024年02月04日
    浏览(57)
  • 【数据结构】图的创建和深度(DFS)广度(BFS)优先遍历

    图是由顶点的有穷非空集合和顶点之间边的集合组成,通过表示为G(V,E),其中,G标示一个图, V是图G中 顶点的集合 , E是图G中 边的集合 。 图分为 无向图 和 有向图 无向图: 若顶点Vi到Vj之间的边没有方向,则称这条边为无向边(Edge),用序偶对(Vi,Vj)表示。 有向图: 若从

    2024年02月05日
    浏览(61)
  • 【数据结构】图的创建(邻接矩阵,邻接表)以及深度广度遍历(BFS,DFS)

    图是由顶点集合及顶点间的关系组成的一种数据结构:G = (V, E),其中: 顶点集合V = {x|x属于某个数据对象集}是有穷非空集合; E = {(x,y)|x,y属于V}或者E = {x, y|x,y属于V Path(x, y)}是顶点间关系的有穷集合,也叫 做边的集合。 完全图:在有n个顶点的无向图中,若有n * (n-1)/2条边,

    2024年02月04日
    浏览(45)
  • 图的遍历——深度优先搜索(DFS)与广度优先搜索(BFS)(附带C语言源码)

    个人主页:【😊个人主页】 系列专栏:【❤️数据结构与算法】 学习名言:天子重英豪,文章教儿曹。万般皆下品,惟有读书高——《神童诗劝学》 第一章 ❤️ 学前知识 第二章 ❤️ 单向链表 第三章 ❤️ 递归 … 在此之前我们学习过了图的一些基本概念,如同在二叉树

    2024年02月06日
    浏览(69)
  • 数据结构实验6 :图的存储与遍历(邻接矩阵的深度优先遍历DFS和邻接表的广度优先遍历BFS)

    利用邻接矩阵存储无向图,并从0号顶点开始进行深度优先遍历。 输入第一行是两个整数n1 n2,其中n1表示顶点数(则顶点编号为0至n1-1),n2表示图中的边数。 之后有n2行输入,每行输入表示一条边,格式是“顶点1 顶点2”,把边插入图中。 例如: 4 4 0 1 1 3 0 3 0 2 先输出存储

    2024年02月09日
    浏览(67)
  • 深入探索图算法:用C语言实现BFS和DFS

    图算法是计算机科学中一个重要且有趣的领域,它们在解决许多现实世界的问题时发挥着关键作用。本篇博客将介绍两种常见的图算法:广度优先搜索(BFS)和深度优先搜索(DFS),并提供在C语言中的实现示例。 广度优先搜索是一种用于图遍历的算法,它从起始节点开始逐

    2024年02月12日
    浏览(41)
  • Python 算法基础篇:深度优先搜索( DFS )和广度优先搜索( BFS )

    深度优先搜索( DFS )和广度优先搜索( BFS )是两种常用的图遍历算法,用于在图中搜索目标节点或遍历图的所有节点。本篇博客将介绍 DFS 和 BFS 算法的基本概念,并通过实例代码演示它们的应用。 😃😄 ❤️ ❤️ ❤️ 深度优先搜索( DFS )是一种用于遍历或搜索图或树

    2024年02月07日
    浏览(67)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包