无人机飞行控制系统功能,多旋翼飞行控制系统概述

这篇具有很好参考价值的文章主要介绍了无人机飞行控制系统功能,多旋翼飞行控制系统概述。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

飞行控制系统存在的意义

行控制系统通过高效的控制算法内核,能够精准地感应并计算出飞行器的飞行姿态等数据,再通过主控制单元实现精准定位悬停和自主平稳飞行。

在没有飞行控制系统的情况下,有很多的专业飞手经过长期艰苦的练习,也能控制飞行器非常平稳地飞行,但是,这个难度和要求特别高,同时需要非常丰富的实战经验。如果没有飞行控制系统,飞手需要时时刻刻关注飞行器的动向,眼睛完全不可能离开飞行器,时时刻刻处于高度紧张的工作状态。而且,人眼的有效视距是非常有限的,即使能稳定地控制飞行,但是控制的精度也很可能满足不了航拍的需求,控制距离越远,控制精度越差。还有,对于不同的拍摄需求,以及面临不同的拍摄环境或条件,人为飞行控制更是难上加上,甚至根本不可能实现。

 文章来源地址https://www.toymoban.com/news/detail-831825.html

无人机飞行控制系统功能,多旋翼飞行控制系统概述,无人机技术,人工智能

飞行控制系统是目前实现简单操控和精准飞行的必备武器。 

飞行控制系统主要部件

飞行控制系统一般主要由主控单元、IMU(惯性测量单元)、GPS指南针模块、LED指示灯模块等部件组成。

主控单元是飞行控制系统的核心,通过它将IMU、GPS指南针、舵机和遥控接收机等设备接入飞行控制系统从而实现飞行器自主飞行功能。除了辅助飞行控制以外,某些主控器还具备记录飞行数据的黑匣子功能,比如:DJI的Ace One。主控单元还能通过USB接口,进行飞行参数的调节和系统的固件升级。

 

无人机飞行控制系统功能,多旋翼飞行控制系统概述,无人机技术,人工智能

IMU(惯性测量单元),包含3轴加速度计、3轴角速度计和气压高度计,是高精度感应飞行器姿态、角度、速度和高度的元器件集合体,在飞行辅助功能中充当极其重要的角色。

 

无人机飞行控制系统功能,多旋翼飞行控制系统概述,无人机技术,人工智能

GPS指南针模块,包含GPS模块和指南针模块,用于精确确定飞行器的方向及经纬度。对于失控保护自动返航,精准定位悬停等功能的实现至关重要。

 

无人机飞行控制系统功能,多旋翼飞行控制系统概述,无人机技术,人工智能

LED指示灯模块,用于实时显示飞行状态,是飞行过程中必不可少的,它能帮助飞手实时了解飞行状态。

 

无人机飞行控制系统功能,多旋翼飞行控制系统概述,无人机技术,人工智能

飞行控制系统主要功能

实现精准定位悬停

飞行控制系统,由于配置有GPS指南针模块,可以实现锁定经纬度和高度的精准定位。即使碰到有风或者其它外力的作用下,飞行控制系统也能通过主控制单元发出的定位指令来自主控制飞行器以实现精准定位悬停。

 

无人机飞行控制系统功能,多旋翼飞行控制系统概述,无人机技术,人工智能

智能失控保护/自动返航降落

飞行控制系统能自动记录返航点,当飞行过程中,出现控制信号丢失,即无线遥控控制链路中断的情况,飞行控制系统能自动计划返航路线,实现自动返航和降落,使飞行或航拍更加安全可靠。

 

无人机飞行控制系统功能,多旋翼飞行控制系统概述,无人机技术,人工智能

低电压报警或自动返航降落

由于多旋翼飞行系统普遍采用电池供电的方式,巡航时间有限。为保证更高效地完成飞行作业任务,飞行控制系统的低电压报警功能会及时通过LED指示灯提醒飞手当前的电压状态,在紧急的情况下,还可以实现自主返航或者降落,以保证整个飞行系统的安全。

内置(两轴)云台增稳功能

云台系统作为无人机航拍不可缺少的设备,主要用以稳定相机,从而拍摄出稳定流畅的画面。越来越多的人采用无人机航拍,主要是因为其成本较低,性价比相对较高。除了无人机飞行系统以外,还需要挂载摄像设备来实现航拍。如果直接将摄像设备进行硬连接,会导致拍摄画面抖动或果冻,这样的素材即使通过软件后期调试也基本不能使用技术加V交流dh2541。

可扩展地面站功能

飞行控制系统还可扩展成更加强大的地面站功能,从而实现超视距全自主飞行。通过地面控制终端,可提前设定飞行航线,高度及速度等参数,一键即可实现从起飞、航线飞行,返航降落等全自主飞行功能。

地面站系统拥有3D地图,可视化飞行仪表,提供飞机姿态、坐标、速度、角度等实时飞行数据,同时也提供飞机及飞控系统状态信息。

 

无人机飞行控制系统功能,多旋翼飞行控制系统概述,无人机技术,人工智能

智能方向控制

智能方向控制(IOC, Intelligent Orientation Control),分为航向锁定和返航点锁定,是一种为多旋翼飞行器量身定制的辅助方向控制功能。在无法辨别飞行器方向的时候,可充分利用该功能对飞行器的方向进行控制。 

航向锁定:

在使用航向锁定时,飞行前向和主控记录的某一时刻的机头朝向一致。

 

无人机飞行控制系统功能,多旋翼飞行控制系统概述,无人机技术,人工智能

返航点锁定:

在使用返航点锁定时,飞行前向为返航点到飞行器的方向。

热点环绕(POI)

热点环绕(POI,Point of Interest)功能,在GPS信号良好的情况下,可以通过拨动遥控器上预先设置好的开关,将飞行器当前所在的坐标点记录为热点。

以热点为中心,在半径5米至500米的范围内,只需要发出横滚的飞行指令,飞行器就会实现360度的热点环绕飞行,机头方向始终指向热点的方向。该功能设置简单,使用方便,可实现对固定的景点进行全方位拍摄的应用。

 

无人机飞行控制系统功能,多旋翼飞行控制系统概述,无人机技术,人工智能

断桨保护功能(六轴及以上的机型)

断桨保护功能是指在姿态或GPS姿态模式下,飞机意外缺失某一螺旋桨动力输出时,飞机可以采用牺牲航向轴控制的办法,继续保持飞行水平姿态。此时飞机可以继续被操控,并安全返航。这一设计大大降低了炸机的风险。

无人机飞行控制系统是无人机的关键组成部分,它负责无人机的稳定和控制,确保无人机能够按照预定要求完成各种任务。

 

到了这里,关于无人机飞行控制系统功能,多旋翼飞行控制系统概述的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 无人机飞行控制实验平台

    无人机在研制过程中需要不断地进行飞行测试,而测试的过程不是万无一失的,飞行过程中发生任何错误都有可能会导致无人机的损毁或破坏,更严重地甚至会造成外界伤害。 基于此我们推出了无人机的三旋转自由度 (3-DOF) 飞行平台测试系统,可以在横滚 (Roll)、俯仰 (Pitch

    2024年02月16日
    浏览(66)
  • 无人机飞行控制技术期末复习

    1.1.1、根据无人机尺寸和续航时间: 1.1.2、根据气动结构特征: 基本结构:机翼,机身,气动舵面,尾翼 优点:

    2024年01月16日
    浏览(98)
  • 【PX4-AutoPilot教程-Offboard】MAVROS功能包控制无人机进入offboard模式飞行官方例程(C++实现)

    主要介绍如何通过MAVROS功能包的offboard模式控制gazebo中的飞机起飞到高度两米。 首先建立工作空间,这里建立一个名为 uav_demo_ws 的工作空间。 之后创建功能包,这里命名为 offboard_run 。 建立C++脚本作为这个功能包的执行文件。 把官方代码复制到这个文件里面,保存退出。

    2024年02月04日
    浏览(60)
  • 基于PID控制器的四旋翼无人机控制系统的simulink建模与仿真,并输出虚拟现实动画

    目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 4.1四旋翼无人机的动力学模型 4.2 PID控制器设计 4.3 姿态控制实现 4.4 VR虚拟现实动画展示 5.完整工程文件        基于PID控制器的四旋翼无人机控制系统的simulink建模与仿真,并输出vr虚拟现实动画,输出PID控制器

    2024年04月09日
    浏览(62)
  • xtdrone用键盘控制无人机飞行 无法起飞

    运行案例 解锁无人机螺旋桨转动但无法起飞 也未报错 解决方法: 在QGC中修改: PX4飞控EKF配置 将PX4使用的EKF配置为 融合GPS的水平位置与气压计高度 。 如果我们想使用视觉定位,就需要把修改配置文件。  此修改意味着EKF融合来自mavros/vision_pose/pose的数据,并不是修改完无

    2024年01月22日
    浏览(82)
  • PX4无人机 - 键盘控制飞行代码

    仿真效果 实机效果 由于图片限制5M以内,只能上传一小段了,整段视频请点击链接 Pixhawk 6c | 无人机 | 键盘控制无人机 | Offboard模式 核心: 发布 mavros/setpoint_velocity/cmd_vel_unstamped 话题,控制x y z三个方向的速度 运行前先运行PX4自带仿真,例如 接着运行以下代码(根据WHEELTEC麦

    2024年02月16日
    浏览(49)
  • 基于simulink的无人机姿态飞行控制仿真

    目录 1.算法描述 2.仿真效果预览 3.MATLAB核心程序 4.完整MATLAB         无人机是无人驾驶飞机的简称(Unmanned Aerial Vehicle),是利用无线电遥控设备和自备的程序控制装置的不载人飞机,包括无人直升机、固定翼机、多旋翼飞行器、无人飞艇、无人伞翼机。广义地看也包括临近

    2024年02月02日
    浏览(63)
  • 无人机飞行控制、导航和路径规划的原理、技术和相关算法

    无人机飞行控制、导航和路径规划是无人机技术的核心组成部分,其原理和技术涉及多个学科领域。这些技术和算法的不断发展和优化,为无人机的应用和发展提供更强有力的支持。下面解释它们的原理、技术和相关算法。 飞行控制: 无人机飞行控制的基本原理是通过传感

    2024年04月12日
    浏览(50)
  • ROS下控制无人机任任意方向下往机头方向飞行

    控制方案如下: 1、无人机任意方向放置后,通过程序获取初始放置的偏航监督yaw 2、结合距离L,计算出相对ROS的ENU坐标系下的XY位置 3、保持角度和目标位置飞行 4、识别到目标后,控制无人机以机体坐标系进行运动 5、运动到目标正上方后,投放物体即可

    2024年02月22日
    浏览(42)
  • m基于PID控制算法的四旋翼无人机飞行控制simulink仿真

    目录 1.算法描述 2.仿真效果预览 3.MATLAB核心程序 4.完整MATLAB   无人机采用常见的四旋翼无人飞行器,如图1所示。       PID 控制器,即控制器的控制方式为 P 比例调整, I 积分调整以及 D 微分调整三个部分构成, PID 控制器是目前为止应用最为广泛的控制方式。 PID 控制器具

    2023年04月22日
    浏览(79)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包