Day46- 动态规划part14

这篇具有很好参考价值的文章主要介绍了Day46- 动态规划part14。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、最长公共子序列

题目一:1143. 最长公共子序列

1143. 最长公共子序列

给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

  • 例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

定义一个二维数组dp,其中dp[i][j]代表text1中前i个字符与text2中前j个字符的最长公共子序列的长度。对于数组中的每个位置dp[i][j],有两种情况:

  1. 如果text1[i-1] == text2[j-1],则说明这两个字符匹配,可以在之前找到的最长公共子序列的基础上加1,即dp[i][j] = dp[i-1][j-1] + 1
  2. 如果text1[i-1] != text2[j-1],则说明这两个字符不匹配,需要从两个可能的最长公共子序列中选择较长的一个,即dp[i][j] = max(dp[i-1][j], dp[i][j-1])

初始条件是dp[0][j] = 0dp[i][0] = 0,因为如果其中一个字符串为空,则最长公共子序列的长度为0。

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int m = text1.length(), n = text2.length();
        vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
    
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                if (text1[i - 1] == text2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }   
        }
    
        return dp[m][n];
    }
};

二、不相交的线

题目一:1035. 不相交的线

1035. 不相交的线

在两条独立的水平线上按给定的顺序写下 nums1 和 nums2 中的整数。

现在,可以绘制一些连接两个数字 nums1[i] 和 nums2[j] 的直线,这些直线需要同时满足满足:

  •  nums1[i] == nums2[j]
  • 且绘制的直线不与任何其他连线(非水平线)相交。

请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。

以这种方法绘制线条,并返回可以绘制的最大连线数。

定义一个二维数组dp,其中dp[i][j]代表nums1中前i个元素和nums2中前j个元素可以形成的最大连线数。对于数组中的每个位置dp[i][j],有两种情况:

  1. 如果nums1[i-1] == nums2[j-1],说明找到了一个匹配对,可以在之前找到的最大连线数的基础上加1,即dp[i][j] = dp[i-1][j-1] + 1
  2. 如果nums1[i-1] != nums2[j-1],说明当前的两个元素不能形成连线,需要从之前的结果中选择最大的那个,即dp[i][j] = max(dp[i-1][j], dp[i][j-1])

初始条件是dp[0][j] = 0dp[i][0] = 0,因为如果其中一个序列为空,则最大连线数为0。

class Solution {
public:
    int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {
        int m = nums1.size(), n = nums2.size();
        vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
    
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                if (nums1[i - 1] == nums2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
    
        return dp[m][n];
    }
};

三、最大子数组和

题目一:53. 最大子数组和 

53. 最大子数组和

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

算法的核心思想是遍历数组,同时维护两个变量:currentSum表示到当前元素为止的最大子数组和(包含当前元素),maxSum表示遍历到目前为止的最大子数组和。

对于数组中的每个元素,将其加到currentSum中,如果currentSum变成负数,就将currentSum重置为0,因为任何包含前面部分的子数组都不可能是最大子数组和。

同时,更新maxSumcurrentSummaxSum中的较大值。文章来源地址https://www.toymoban.com/news/detail-831896.html

class Solution {
public:
    int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {
        int m = nums1.size(), n = nums2.size();
        vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
    
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                if (nums1[i - 1] == nums2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
    
        return dp[m][n];
    }
};

到了这里,关于Day46- 动态规划part14的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 代码随想录算法训练51 | 动态规划part12

    本题加了一个冷冻期,状态就多了,有点难度,大家要把各个状态分清,思路才能清晰  视频讲解: 动态规划来决定最佳时机,这次有冷冻期!| LeetCode:309.买卖股票的最佳时机含冷冻期_哔哩哔哩_bilibili 代码随想录 相对122.买卖股票的最佳时机II ,本题只需要在计算卖出操

    2024年01月18日
    浏览(55)
  • 二刷代码随想录——动态规划day40

    一个本硕双非的小菜鸡,备战24年秋招,计划二刷完卡子哥的刷题计划,加油! 二刷决定精刷了,于是参加了卡子哥的刷题班,训练营为期60天,我一定能坚持下去,迎来两个月后的脱变的,加油! 推荐一手卡子哥的刷题网站,感谢卡子哥。代码随想录 终于来到了守关boss。

    2024年03月11日
    浏览(57)
  • 【代码随想录】Day 49 动态规划10 (买卖股票Ⅰ、Ⅱ)

    https://leetcode.cn/problems/best-time-to-buy-and-sell-stock/ dp[i]表示在第i天时,卖/不卖股票能获得的最大利润: 1、卖股票:dp[i] = prices[i] -minPrice(i天以前的最低价格) 2、不卖股票:dp[i] = dp[i-1](因为不卖股票,所以状态和前一天保持一致) ∴dp[i] = max(dp[i-1], prices[i] - minPrice); https

    2024年02月09日
    浏览(47)
  • Day39 代码随想录(1刷) 动态规划 0-1背包

    题目描述 小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同的空间,并且具有不同的价值。  小明的行李空间

    2024年04月23日
    浏览(53)
  • 【Day52】代码随想录之动态规划_打家劫舍

    动态规划理论基础 动规五部曲: 确定dp数组 下标及dp[i] 的含义。 递推公式:比如斐波那契数列 dp[i] = dp[i-1] + dp[i-2]。 初始化dp数组。 确定遍历顺序:从前到后or其他。 打印。 出现结果不正确: 打印dp日志和自己想的一样:递推公式、初始化或者遍历顺序出错。 打印dp日志和

    2024年02月22日
    浏览(53)
  • 【Day42】代码随想录之动态规划0-1背包_416. 分割等和子集

    动态规划理论基础 动规五部曲: 确定dp数组 下标及dp[i] 的含义。 递推公式:比如斐波那契数列 dp[i] = dp[i-1] + dp[i-2]。 初始化dp数组。 确定遍历顺序:从前到后or其他。 推导dp数组。 出现结果不正确: 打印dp日志和自己想的一样:递推公式、初始化或者遍历顺序出错。 打印

    2024年02月20日
    浏览(68)
  • 我在代码随想录|写代码Day33 | 动态规划| 路径问题| 62.不同路径,63. 不同路径 II,343. 整数拆分

    🔥博客介绍`: 27dCnc 🎥系列专栏: 数据结构与算法 算法入门 C++项目 🎥 当前专栏: 算法入门 专题 : 数据结构帮助小白快速入门算法 👍👍👍👍👍👍👍👍👍👍👍👍 ☆*: .。. o(≧▽≦)o .。.:*☆ ❤️感谢大家点赞👍收藏⭐评论✍️ 今日学习打卡 代码随想录 - 动态规划

    2024年03月11日
    浏览(63)
  • 代码随想录刷题 Day14

    二叉法的前中后序的遍历, 前中后所说的是根节点输出的顺序;  有两种遍历方式, 1. 递归法 (自己调用自己,本质是用栈) 代码比较简单,但是需要创建一个额外的函数来进行自己调用自己的过程;用递归法的话三种遍历方式只需要改变代码的位置就可以。 Leetcode 对应

    2024年02月08日
    浏览(40)
  • 代码随想录 Day35 动态规划04 01背包问题和完全背包问题 LeetCode T416 分割等和子集

    说到背包问题大家都会想到使用动规的方式来求解,那么为什么用动规呢, dp数组代表什么呢 ? 初始化是什么 , 遍历方式又是什么 ,这篇文章笔者将详细讲解背包问题的经典例题0-1背包问题和完全背包问题的解题方式,希望能帮助到大家 有人一提到背包问题就只会使用动态规划来

    2024年02月06日
    浏览(76)
  • 【Day43】代码随想录之动态规划0-1背包_1049. 最后一块石头的重量 II_494. 目标和_ 474.一和零

    动态规划理论基础 动规五部曲: 确定dp数组 下标及dp[i] 的含义。 递推公式:比如斐波那契数列 dp[i] = dp[i-1] + dp[i-2]。 初始化dp数组。 确定遍历顺序:从前到后or其他。 打印。 出现结果不正确: 打印dp日志和自己想的一样:递推公式、初始化或者遍历顺序出错。 打印dp日志和

    2024年02月22日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包