Datawhale零基础入门金融风控Task1 赛题理解

这篇具有很好参考价值的文章主要介绍了Datawhale零基础入门金融风控Task1 赛题理解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Task1 赛题理解

Tip:本次新人赛是Datawhale与天池联合发起的0基础入门系列赛事第四场 —— 零基础入门金融风控之贷款违约预测挑战赛。
赛题以金融风控中的个人信贷为背景,要求选手根据贷款申请人的数据信息预测其是否有违约的可能,以此判断是否通过此项贷款,这是一个典型的分类问题。通过这道赛题来引导大家了解金融风控中的一些业务背景,解决实际问题,帮助竞赛新人进行自我练习、自我提高。

项目地址:https://github.com/datawhalechina/team-learning-data-mining/tree/master/FinancialRiskControl

比赛地址:https://tianchi.aliyun.com/competition/entrance/531830/introduction

1.1 学习目标

理解赛题数据和目标,清楚评分体系。

完成相应报名,下载数据和结果提交打卡(可提交示例结果),熟悉比赛流程

1.2 了解赛题

  • 赛题概况
  • 数据概况
  • 预测指标
  • 分析赛题

1.2.1 赛题概况

比赛要求参赛选手根据给定的数据集,建立模型,预测金融风险。

赛题以预测金融风险为任务,数据集报名后可见并可下载,该数据来自某信贷平台的贷款记录,总数据量超过120w,包含47列变量信息,其中15列为匿名变量。为了保证比赛的公平性,将会从中抽取80万条作为训练集,20万条作为测试集A,20万条作为测试集B,同时会对employmentTitle、purpose、postCode和title等信息进行脱敏。

通过这道赛题来引导大家走进金融风控数据竞赛的世界,主要针对于于竞赛新人进行自我练习、自我提高。

1.2.2 数据概况

一般而言,对于数据在比赛界面都有对应的数据概况介绍(匿名特征除外),说明列的性质特征。了解列的性质会有助于我们对于数据的理解和后续分析。 Tip:匿名特征,就是未告知数据列所属的性质的特征列。

train.csv

  • id 为贷款清单分配的唯一信用证标识
  • loanAmnt 贷款金额
  • term 贷款期限(year)
  • interestRate 贷款利率
  • installment 分期付款金额
  • grade 贷款等级
  • subGrade 贷款等级之子级
  • employmentTitle 就业职称
  • employmentLength 就业年限(年)
  • homeOwnership 借款人在登记时提供的房屋所有权状况
  • annualIncome 年收入
  • verificationStatus 验证状态
  • issueDate 贷款发放的月份
  • purpose 借款人在贷款申请时的贷款用途类别
  • postCode 借款人在贷款申请中提供的邮政编码的前3位数字
  • regionCode 地区编码
  • dti 债务收入比
  • delinquency_2years 借款人过去2年信用档案中逾期30天以上的违约事件数
  • ficoRangeLow 借款人在贷款发放时的fico所属的下限范围
  • ficoRangeHigh 借款人在贷款发放时的fico所属的上限范围
  • openAcc 借款人信用档案中未结信用额度的数量
  • pubRec 贬损公共记录的数量
  • pubRecBankruptcies 公开记录清除的数量
  • revolBal 信贷周转余额合计
  • revolUtil 循环额度利用率,或借款人使用的相对于所有可用循环信贷的信贷金额
  • totalAcc 借款人信用档案中当前的信用额度总数
  • initialListStatus 贷款的初始列表状态
  • applicationType 表明贷款是个人申请还是与两个共同借款人的联合申请
  • earliesCreditLine 借款人最早报告的信用额度开立的月份
  • title 借款人提供的贷款名称
  • policyCode 公开可用的策略_代码=1新产品不公开可用的策略_代码=2
  • n系列匿名特征 匿名特征n0-n14,为一些贷款人行为计数特征的处理

1.2.3 预测指标

竞赛采用AUC作为评价指标。AUC(Area Under Curve)被定义为 ROC曲线 下与坐标轴围成的面积。

分类算法常见的评估指标如下:

1、混淆矩阵(Confuse Matrix)

  • (1)若一个实例是正类,并且被预测为正类,即为真正类TP(True Positive )
  • (2)若一个实例是正类,但是被预测为负类,即为假负类FN(False Negative )
  • (3)若一个实例是负类,但是被预测为正类,即为假正类FP(False Positive )
  • (4)若一个实例是负类,并且被预测为负类,即为真负类TN(True Negative )

2、准确率(Accuracy)
准确率是常用的一个评价指标,但是不适合样本不均衡的情况。
A c c u r a c y = T P + T N T P + T N + F P + F N Accuracy = \frac{TP + TN}{TP + TN + FP + FN} Accuracy=TP+TN+FP+FNTP+TN

3、精确率(Precision)
又称查准率,正确预测为正样本(TP)占预测为正样本(TP+FP)的百分比。
P r e c i s i o n = T P T P + F P Precision = \frac{TP}{TP + FP} Precision=TP+FPTP

4、召回率(Recall)
又称为查全率,正确预测为正样本(TP)占正样本(TP+FN)的百分比。
R e c a l l = T P T P + F N Recall = \frac{TP}{TP + FN} Recall=TP+FNTP

5、F1 Score
精确率和召回率是相互影响的,精确率升高则召回率下降,召回率升高则精确率下降,如果需要兼顾二者,就需要精确率、召回率的结合F1 Score。
F 1 − S c o r e = 2 1 P r e c i s i o n + 1 R e c a l l F1-Score = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}} F1Score=Precision1+Recall12

6、P-R曲线(Precision-Recall Curve)
P-R曲线是描述精确率和召回率变化的曲线

Datawhale零基础入门金融风控Task1 赛题理解,python

7、ROC(Receiver Operating Characteristic)

  • ROC空间将假正例率(FPR)定义为 X 轴,真正例率(TPR)定义为 Y 轴。

TPR:在所有实际为正例的样本中,被正确地判断为正例之比率。
T P R = T P T P + F N TPR = \frac{TP}{TP + FN} TPR=TP+FNTP
FPR:在所有实际为负例的样本中,被错误地判断为正例之比率。
F P R = F P F P + T N FPR = \frac{FP}{FP + TN} FPR=FP+TNFP

Datawhale零基础入门金融风控Task1 赛题理解,python

8、AUC(Area Under Curve)
AUC(Area Under Curve)被定义为 ROC曲线 下与坐标轴围成的面积,显然这个面积的数值不会大于1。又由于ROC曲线一般都处于y=x这条直线的上方,所以AUC的取值范围在0.5和1之间。AUC越接近1.0,检测方法真实性越高;等于0.5时,则真实性最低,无应用价值。

对于金融风控预测类常见的评估指标如下:

1、KS(Kolmogorov-Smirnov)
KS统计量由两位苏联数学家A.N. Kolmogorov和N.V. Smirnov提出。在风控中,KS常用于评估模型区分度。区分度越大,说明模型的风险排序能力(ranking ability)越强。
K-S曲线与ROC曲线类似,不同在于

  • ROC曲线将真正例率和假正例率作为横纵轴
  • K-S曲线将真正例率和假正例率都作为纵轴,横轴则由选定的阈值来充当。
    公式如下:
    K S = m a x ( T P R − F P R ) KS=max(TPR-FPR) KS=max(TPRFPR)
    KS不同代表的不同情况,一般情况KS值越大,模型的区分能力越强,但是也不是越大模型效果就越好,如果KS过大,模型可能存在异常,所以当KS值过高可能需要检查模型是否过拟合。以下为KS值对应的模型情况,但此对应不是唯一的,只代表大致趋势。
KS(%) 好坏区分能力
20以下 不建议采用
20-40 较好
41-50 良好
51-60 很强
61-75 非常强
75以上 过于高,疑似存在问题

2、ROC

3、AUC

1.2.4. 赛题流程

Datawhale零基础入门金融风控Task1 赛题理解,python

1.3 代码示例

本部分为对于数据读取和指标评价的示例。

1.3.1 数据读取pandas

import pandas as pd
train = pd.read_csv('train.csv')
testA = pd.read_csv('testA.csv')
print('Train data shape:',train.shape)
print('TestA data shape:',testA.shape)
Train data shape: (800000, 47)
TestA data shape: (200000, 48)
train.head()
id loanAmnt term interestRate installment grade subGrade employmentTitle employmentLength homeOwnership ... n5 n6 n7 n8 n9 n10 n11 n12 n13 n14
0 0 35000.0 5 19.52 917.97 E E2 320.0 2 years 2 ... 9.0 8.0 4.0 12.0 2.0 7.0 0.0 0.0 0.0 2.0
1 1 18000.0 5 18.49 461.90 D D2 219843.0 5 years 0 ... NaN NaN NaN NaN NaN 13.0 NaN NaN NaN NaN
2 2 12000.0 5 16.99 298.17 D D3 31698.0 8 years 0 ... 0.0 21.0 4.0 5.0 3.0 11.0 0.0 0.0 0.0 4.0
3 3 11000.0 3 7.26 340.96 A A4 46854.0 10+ years 1 ... 16.0 4.0 7.0 21.0 6.0 9.0 0.0 0.0 0.0 1.0
4 4 3000.0 3 12.99 101.07 C C2 54.0 NaN 1 ... 4.0 9.0 10.0 15.0 7.0 12.0 0.0 0.0 0.0 4.0

5 rows × 47 columns

1.3.2 分类指标评价计算示例

## 混淆矩阵
import numpy as np
from sklearn.metrics import confusion_matrix
y_pred = [0, 1, 0, 1]
y_true = [0, 1, 1, 0]
print('混淆矩阵:\n',confusion_matrix(y_true, y_pred))
混淆矩阵:
 [[1 1]
 [1 1]]
## accuracy
from sklearn.metrics import accuracy_score
y_pred = [0, 1, 0, 1]
y_true = [0, 1, 1, 0]
print('ACC:',accuracy_score(y_true, y_pred))
ACC: 0.5
## Precision,Recall,F1-score
from sklearn import metrics
y_pred = [0, 1, 0, 1]
y_true = [0, 1, 1, 0]
print('Precision',metrics.precision_score(y_true, y_pred))
print('Recall',metrics.recall_score(y_true, y_pred))
print('F1-score:',metrics.f1_score(y_true, y_pred))
Precision 0.5
Recall 0.5
F1-score: 0.5
## P-R曲线
import matplotlib.pyplot as plt
from sklearn.metrics import precision_recall_curve
y_pred = [0, 1, 1, 0, 1, 1, 0, 1, 1, 1]
y_true = [0, 1, 1, 0, 1, 0, 1, 1, 0, 1]
precision, recall, thresholds = precision_recall_curve(y_true, y_pred)
plt.plot(precision, recall)
[<matplotlib.lines.Line2D at 0x2170d0d6108>]

Datawhale零基础入门金融风控Task1 赛题理解,python

## ROC曲线
from sklearn.metrics import roc_curve
y_pred = [0, 1, 1, 0, 1, 1, 0, 1, 1, 1]
y_true = [0, 1, 1, 0, 1, 0, 1, 1, 0, 1]
FPR,TPR,thresholds=roc_curve(y_true, y_pred)
plt.title('ROC')
plt.plot(FPR, TPR,'b')
plt.plot([0,1],[0,1],'r--')
plt.ylabel('TPR')
plt.xlabel('FPR')
Text(0.5, 0, 'FPR')

Datawhale零基础入门金融风控Task1 赛题理解,python

## AUC
import numpy as np
from sklearn.metrics import roc_auc_score
y_true = np.array([0, 0, 1, 1])
y_scores = np.array([0.1, 0.4, 0.35, 0.8])
print('AUC socre:',roc_auc_score(y_true, y_scores))
AUC socre: 0.75
## KS值 在实际操作时往往使用ROC曲线配合求出KS值
from sklearn.metrics import roc_curve
y_pred = [0, 1, 1, 0, 1, 1, 0, 1, 1, 1]
y_true = [0, 1, 1, 0, 1, 0, 1, 1, 1, 1]
FPR,TPR,thresholds=roc_curve(y_true, y_pred)
KS=abs(FPR-TPR).max()
print('KS值:',KS)
KS值: 0.5238095238095237

1.4 经验总结

赛题理解是开始比赛的第一步,赛题的理解有助于对竞赛全局的把握。通过赛题理解有助于对赛题的业务逻辑把握,对于后期的特征工程构建和模型选择都尤为重要。

  • 在开始比赛之前要对赛题进行充分的了解。
  • 比赛什么时候开始,什么时候结束,什么时候换B榜数据。
  • 和该比赛有没有类似的比赛可以参考借鉴。
  • 线上提交结果的次数往往是有限的,提前了解每日可以提交的次数。
  • 比赛使用的是什么评价指标,可以选择相同的评价指标作为线下验证的方式。

1.5 拓展知识——评分卡

评分卡是一张拥有分数刻度会让相应阈值的表。信用评分卡是用于用户信用的一张刻度表。以下代码是一个非标准评分卡的代码流程,用于刻画用户的信用评分。评分卡是金融风控中常用的一种对于用户信用进行刻画的手段哦!

#评分卡 不是标准评分卡
def Score(prob,P0=600,PDO=20,badrate=None,goodrate=None):
    P0 = P0
    PDO = PDO
    theta0 = badrate/goodrate
    B = PDO/np.log(2)
    A = P0 + B*np.log(2*theta0)
    score = A-B*np.log(prob/(1-prob))
    return score

原文链接:
https://github.com/datawhalechina/team-learning-data-mining/blob/master/FinancialRiskControl/Task1%20%E8%B5%9B%E9%A2%98%E7%90%86%E8%A7%A3.md文章来源地址https://www.toymoban.com/news/detail-832252.html

到了这里,关于Datawhale零基础入门金融风控Task1 赛题理解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Datawhale Django后端开发入门 Vscode TASK02 Admin管理员、外键的使用

    一.Admin管理员的使用 1、启动django服务 使用创建管理员之前,一定要先启动django服务,虽然TASK01和TASK02是分开的,但是进行第二个流程的时候记得先启动django服务,注意此时是在你的项目文件夹下启动的,时刻注意要执行的文件夹。 我这里又重新创建了一个虚拟环境,此时的

    2024年02月12日
    浏览(44)
  • MetaGPT学习笔记 - task1&task2

    章节:task1task2 一.github地址:github.com/geekan/MetaGPT 使 GPT 以软件公司的形式工作,协作处理更复杂的任务 MetaGPT输入 一句话的老板需求 ,输出 用户故事 / 竞品分析 / 需求 / 数据结构 / APIs / 文件等 MetaGPT内部包括 产品经理 / 架构师 / 项目经理 / 工程师 ,它提供了一个 软件公司

    2024年01月19日
    浏览(49)
  • 【Django】Task1安装python环境及运行项目

    写在最前 8月份Datawhale组队学习,在这个群除我佬的时代,写一下blog记录学习过程。 参考资源: 学习项目github:https://github.com/Joe-2002/sweettalk-django4.2 队长博客:https://blog.plutos.org.cn/posts/fc39ad07.html github地址:https://github.com/Joe-2002/sweettalk-django4.2 之前已经在本机装过anaconda环境

    2024年02月12日
    浏览(52)
  • 【RL】(task1)马尔科夫过程、动态规划、DQN

    递归结构形式的贝尔曼方程计算给定状态下的预期回报,这样的方式使得用逐步迭代的方法就能逼近真实的状态/行动值。 有了Bellman equation就可以计算价值函数了 马尔科夫过程描述了一个具有无记忆性质的随机过程,未来状态只依赖于当前状态,与过去状态无关,类似于一个

    2024年01月21日
    浏览(38)
  • 【动手学深度学习】(task1&2&3)注意力机制剖析

    将注意力汇聚的输出计算可以作为值的加权平均,选择不同的注意力评分函数会带来不同的注意力汇聚操作。 当查询和键是不同长度的矢量时,可以使用可加性注意力评分函数。当它们的长度相同时,使用缩放的“点-积”注意力评分函数的计算效率更高。 AI相关从业人员

    2023年04月11日
    浏览(39)
  • 【RL】(task1)绪论、马尔科夫过程、动态规划、DQN(更新中)

    递归结构形式的贝尔曼方程计算给定状态下的预期回报,这样的方式使得用逐步迭代的方法就能逼近真实的状态/行动值。 有了Bellman equation就可以计算价值函数了 马尔科夫过程描述了一个具有无记忆性质的随机过程,未来状态只依赖于当前状态,与过去状态无关,类似于一个

    2024年01月20日
    浏览(48)
  • [230530] 托福TPO口语真题| TPO66~TPO72|XPO|Task1|20:30~21:00

    目录 真题 预测题​​​​​​​ 66. Do you agree or disagree with the following statement? Some people believe that a person needs a college education in order to have a successful career. Others believe that a college education is not necessary for success. Use details and examples to explain your opinion. 67. Some students who go to another c

    2024年02月06日
    浏览(40)
  • 浅谈金融场景的风控策略

    随着互联网垂直电商、消费金融等领域的快速崛起,用户及互联网、金融平台受到欺诈的风险也急剧增加。网络黑灰产已形成完整的、成熟的产业链,每年千亿级别的投入规模,超过1000万的“从业者”,其专业度也高于大多数技术人员,给互联网及金融平台的攻防对抗带来严

    2024年02月13日
    浏览(57)
  • 数据挖掘实践(金融风控):金融风控之贷款违约预测挑战赛(上篇)[xgboots/lightgbm/Catboost等模型]--模型融合:stacking、blending

    赛题以金融风控中的个人信贷为背景,要求选手根据贷款申请人的数据信息预测其是否有违约的可能,以此判断是否通过此项贷款,这是一个典型的分类问题。通过这道赛题来引导大家了解金融风控中的一些业务背景,解决实际问题,帮助竞赛新人进行自我练习、自我提高。

    2024年02月05日
    浏览(45)
  • 一文梳理金融风控建模全流程(Python)

    ▍目录 一、简介 风控信用评分卡简介 Scorecardpy库简介 二、目标定义与数据准备 目标定义 数据准备 三、安装scorecardpy包 四、数据检查 五、数据筛选 六、数据划分 七、变量分箱 卡方分箱 手动调整分箱 八、建立模型 相关性分析 多重共线性检验VIF KS和AUC 评分映射 PSI稳定性指

    2024年01月25日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包