图论——最短路径

这篇具有很好参考价值的文章主要介绍了图论——最短路径。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Dijkstra 算法

Dijkstra’s algorithm(迪杰斯特拉算法)是一种用于解决图中单源最短路径问题的贪婪算法。该算法由荷兰计算机科学家Edsger Dijkstra于1956年提出。它主要用于计算从一个起始顶点到图中所有其他顶点的最短路径。

算法步骤如下:

初始化: 创建一个集合S,用于存储已找到最短路径的顶点,以及一个数组dist,用于存储从起始顶点到各个顶点的最短路径长度。将起始顶点的距离设置为0,其他顶点的距离设置为无穷大。将所有顶点标记为未访问。

找到最短路径: 从未访问的顶点中选择距离起始顶点最近的顶点,将其标记为已访问,并更新与该顶点相邻的顶点的最短路径距离。更新的规则是如果通过当前选定的顶点可以得到更短的路径,就更新距离数组dist。

重复: 重复步骤2,直到所有顶点都被访问。在每次迭代中,都选择未访问的顶点中距离起始顶点最近的顶点。

最终结果: 一旦所有顶点都被访问,dist数组中存储的值就是从起始顶点到每个顶点的最短路径长度。

Dijkstra算法的关键优势是它可以在非负权重的有向图中文章来源地址https://www.toymoban.com/news/detail-832724.html

到了这里,关于图论——最短路径的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【MATLAB源码-第117期】基于matlab的蜘蛛猴优化算法(SMO)机器人栅格路径规划,输出做短路径图和适应度曲线。

    蜘蛛猴优化算法(Spider Monkey Optimization, SMO)是一种灵感来源于蜘蛛猴觅食行为的群体智能优化算法。蜘蛛猴是一种生活在南美洲热带雨林中的灵长类动物,它们在寻找食物时展现出的社会行为和策略被用来模拟解决优化问题。 群体结构 在SMO算法中,整个种群被划分为多个小

    2024年01月20日
    浏览(46)
  • 【MATLAB源码-第168期】基于matlab的布谷鸟优化算法(COA)机器人栅格路径规划,输出做短路径图和适应度曲线。

    布谷鸟优化算法(Cuckoo Optimization Algorithm, COA)是一种启发式搜索算法,其设计灵感源自于布谷鸟的独特生活习性,尤其是它们的寄生繁殖行为。该算法通过模拟布谷鸟在自然界中的行为特点,为解决各种复杂的优化问题提供了一种新颖的方法。从算法提出至今,COA因其高效性

    2024年04月08日
    浏览(90)
  • 图论——最短路算法

    如上图,已知图G。 问节点1到节点3的最短距离。 可心算而出为d[1,2]+d[2,3]=1+1=2,比d[1,3]要小。 是一种基于三角形不等式的多源最短路径算法。边权可以为负数 表现为a[i,j]+a[j,k]a[i,k]。 算法思想: 枚举“中转站”(k),“起点”(i),“终点”(j) 设d[i,j]为由i点到j点的最短路径 则  初

    2024年02月13日
    浏览(39)
  • 【图论】最短路算法

    不能处理边权为负的情况, 复杂度O(nlogn) 步骤与基本思路 (1)初始化距离数组dist[N],将其所有值赋为0x3f,并将起点1的dist初始化为0,存入优先队列heap中 (2)从所有 未被遍历 的点中找到与起点1的 距离dist[i]最小 的点,并将该点标记为已遍历 (3)利用刚刚遍历的这个点

    2024年02月16日
    浏览(39)
  • 【图论算法】最短路径算法(无权最短路径、Dijkstra算法、带负边值的图、无圈图)

    本篇博客将考察各种最短路径问题。     无权最短路径     Dijkstra 算法     具有负边值的图     无圈图     所有顶点对间的最短路径     最短路径的例子–词梯游戏 输入是一个赋权图:与每条边 (v i , v j ) 相联系的是穿越该边的开销(或称为值

    2023年04月12日
    浏览(43)
  • 算法——图论——最短路径——Floyd / 传递闭包

    目录  Floyd-Warshall(弗洛伊德)算法 传递闭包 一、试题 算法训练 盾神与离散老师2    求所有顶点到所有顶点的最短路径问题 弗洛伊德算法(Floyd-Warshall algorithm)是一种用于寻找图中所有顶点对之间最短路径的动态规划算法。 该算法可以处理带有负权边但不含负权环的加权

    2024年02月20日
    浏览(41)
  • 图论与算法(7)最短路径问题

    最短路径问题是指在一个加权图中寻找两个顶点之间的最短路径,其中路径的长度由边的权重确定。 常见的最短路径算法包括: Dijkstra算法 :适用于解决单源最短路径问题,即从一个固定的起点到图中所有其他顶点的最短路径。该算法通过不断选择当前路径上权重最小的顶

    2024年02月06日
    浏览(42)
  • 12.图论1 最短路之dijkstra算法

    二分图 判定:染色法。 性质: 可以二着色。 无奇圈。 树的直径模板 两遍dfs/bfs,证明时反证法的核心是用假设推出矛盾。 设1是一开始随机选的点,s是与其最远的点,证明s是直径的一端。 反证:假设s不是直径的一端,ss是直径的一端。 现在要做的就是证明ss是直径的一端

    2024年02月20日
    浏览(47)
  • 算法提高-图论-单源最短路的扩展应用

    多源点单终点最短路建图: 创建虚拟源点(创建虚拟源点的时候以是spfa为例 可以在建图的时候建出来,也可以在spfa这直接入队,也是虚拟源点的意思) 反向建图变成单源点多终点,然后遍历终点的dist即可找出最短路 这题挺简单的就不详细说了,主要是第一次遇到计数问题

    2024年02月16日
    浏览(48)
  • 算法提高-图论-单源最短路的综合应用

    多次dijkstra求每个点到其它点的最短距离, 此时相当于建好了一张图,每个点之间的最短距离都知道了,接下来dfs搜一下怎么走最短即可 一篇博客解释了为什么一个正向建图求最小值,反向建图求最大值 根本思想是保证1到n的买卖是连通的

    2024年02月11日
    浏览(75)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包