【深度优先搜索】【组合数学】【动态规划】1467.两个盒子中球的颜色数相同的概率

这篇具有很好参考价值的文章主要介绍了【深度优先搜索】【组合数学】【动态规划】1467.两个盒子中球的颜色数相同的概率。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

作者推荐

【动态规划】【字符串】【行程码】1531. 压缩字符串

本文涉及知识点

动态规划汇总
深度优先搜索 组合数学

LeetCode1467 两个盒子中球的颜色数相同的概率

桌面上有 2n 个颜色不完全相同的球,球上的颜色共有 k 种。给你一个大小为 k 的整数数组 balls ,其中 balls[i] 是颜色为 i 的球的数量。
所有的球都已经 随机打乱顺序 ,前 n 个球放入第一个盒子,后 n 个球放入另一个盒子(请认真阅读示例 2 的解释部分)。
注意:这两个盒子是不同的。例如,两个球颜色分别为 a 和 b,盒子分别为 [] 和 (),那么 [a] (b) 和 [b] (a) 这两种分配方式是不同的(请认真阅读示例的解释部分)。
请返回「两个盒子中球的颜色数相同」的情况的概率。答案与真实值误差在 10^-5 以内,则被视为正确答案
示例 1:
输入:balls = [1,1]
输出:1.00000
解释:球平均分配的方式只有两种:

  • 颜色为 1 的球放入第一个盒子,颜色为 2 的球放入第二个盒子
  • 颜色为 2 的球放入第一个盒子,颜色为 1 的球放入第二个盒子
    这两种分配,两个盒子中球的颜色数都相同。所以概率为 2/2 = 1 。
    示例 2:
    输入:balls = [2,1,1]
    输出:0.66667
    解释:球的列表为 [1, 1, 2, 3]
    随机打乱,得到 12 种等概率的不同打乱方案,每种方案概率为 1/12 :
    [1,1 / 2,3], [1,1 / 3,2], [1,2 / 1,3], [1,2 / 3,1], [1,3 / 1,2], [1,3 / 2,1], [2,1 / 1,3], [2,1 / 3,1], [2,3 / 1,1], [3,1 / 1,2], [3,1 / 2,1], [3,2 / 1,1]
    然后,我们将前两个球放入第一个盒子,后两个球放入第二个盒子。
    这 12 种可能的随机打乱方式中的 8 种满足「两个盒子中球的颜色数相同」。
    概率 = 8/12 = 0.66667
    示例 3:
    输入:balls = [1,2,1,2]
    输出:0.60000
    解释:球的列表为 [1, 2, 2, 3, 4, 4]。要想显示所有 180 种随机打乱方案是很难的,但只检查「两个盒子中球的颜色数相同」的 108 种情况是比较容易的。
    概率 = 108 / 180 = 0.6 。
    提示:
    1 <= balls.length <= 8
    1 <= balls[i] <= 6
    sum(balls) 是偶数

深度优先搜索

极端情况下,8种球,6种颜色。每种球选择0到6个,共7种选择。78 约等于5e6。再加上剪支,能过。
m_iCan 记录,合法选择的可能数。
m_iAns 记录,符合题意的可能数。
注意: 从ball[i]种选择m个求,是组合 C b a l l s [ i ] m \Large C_{balls[i]}^m Cballs[i]m

代码

核心代码

template<class Result =int >
class CCombination
{
public:
	CCombination()
	{
		m_v.assign(1, vector<Result>(1,1));
	}
	Result Get(int sel, int total)
	{
		while (m_v.size() <= total)
		{
			int iSize = m_v.size();
			m_v.emplace_back(iSize + 1, 1);
			for (int i = 1; i < iSize; i++)
			{
				m_v[iSize][i] = m_v[iSize - 1][i] + m_v[iSize - 1][i - 1];
			}
		}
		return m_v[total][sel];
	}
protected:
	vector<vector<Result>> m_v;
};

class Solution {
public:
	double getProbability(vector<int>& balls) {
		m_iN = std::accumulate(balls.begin(), balls.end(), 0) / 2;
		DFS(balls, 0, 0, 0, 0,1);
		return (double)m_iiAns / m_iiSel;
	}
	void DFS(const vector<int>& balls,int iCur,int iHasSel,int iSelAll,int iSel0,long long iiMul)
	{
		if (iHasSel == m_iN)
		{
			m_iiSel += iiMul;
			if (iSelAll == iSel0 + balls.size()- iCur )
			{//余下的球全部不选择
				m_iiAns += iiMul;
			}
			return;
		}
		if (iCur >= balls.size())
		{
			return ;
		}
		for (int curSel = 0; (curSel <= balls[iCur])&&(curSel+iHasSel <= m_iN); curSel++)
		{
			DFS(balls, iCur + 1, curSel + iHasSel, iSelAll + (curSel == balls[iCur]), iSel0 + (0 == curSel),iiMul*m_com.Get(curSel, balls[iCur]));
		}
	}
	long long m_iN, m_iiSel=0, m_iiAns=0;
	CCombination<int> m_com;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}

}

int main()
{	
	vector<int> balls;
	
	{
		Solution sln;
		balls = { 1, 1 };
		auto res = sln.getProbability(balls);
		assert(abs(res -  1 ) < 0.0001);
	}

	{
		Solution sln;
		balls = { 2,1,1 };
		auto res = sln.getProbability(balls);
		assert(abs(res - 0.66667) < 0.0001);
	}

	{
		Solution sln;
		balls = { 1,2,1,2 };
		auto res = sln.getProbability(balls);
		assert(abs(res - 0.6) < 0.0001);
	}
	{
		Solution sln;
		balls = { 6, 6, 6, 6, 6, 6, 6, 6 };
		auto res = sln.getProbability(balls);
		assert(abs(res - 0.85571) < 0.0001);
	}
	
}

动态规划

动态规划的状态表示

pre[sel][c]记录可能排列数量。sel表示第一个盒子的球数,c表示颜色差。c等于0,表示左边全选的球的数量 比 右边全先的求的数量 少6。 c = 全部在第一个盒子的颜色数- 全部在第二个盒子的颜色+6。
不在两种颜色相差8的情况:那样一个盒子为空,和n个球矛盾。
不存在颜色相差7的情况:全选7种颜色,至少有7个球。全先1种颜色顶多6个球。无法相等。
存在相差6的情况:{** 1 1 1 1 1 1 ** 3 3} 。前6个球是1,全选。

class Solution {
public:
	double getProbability(vector<int>& balls) {		
		const int n = std::accumulate(balls.begin(), balls.end(), 0) / 2;
		vector<vector<long long>> pre(n + 1, vector<long long>(13, 0));
		pre[0][6] = 1;
		for (const auto& b : balls)
		{
			vector<vector<long long>> dp(n + 1, vector<long long>(13, 0));
			for (int col = 0; col < 13; col++)
			{
				for (int preSel = 0; preSel <= n; preSel++)
				{
					for (int curSel = 0; (curSel <= b) && (preSel + curSel <= n); curSel++)
					{
						int col1 = col + (curSel == b) - (curSel == 0);
						if ((col1 >= 0) && (col1 < 13))
						{
							dp[preSel + curSel][col1] += pre[preSel][col]*m_com.Get(curSel,b);
						}
					}
				}
			}
			pre.swap(dp);
		}
		long long llAns = pre.back()[6], llSel = std::accumulate(pre.back().begin(), pre.back().end(),0LL);
		return (double)llAns / llSel;
	}
	CCombination<int> m_com;
};

2023年2月版

class Solution {
public:
double getProbability(const vector& balls) {
const int iTotal = std::accumulate(balls.begin(), balls.end(), 0);
m_c = balls.size();
vector<vector> combinations(6 + 1, vector(6 + 1, 1));
for (int i = 1; i <= 6; i++)
{
for (int j = 1; j < i; j++)
{
combinations[i][j] = combinations[i - 1][j - 1] + combinations[i - 1][j];
}
}
vector<vector> pre(13, vector(iTotal + 1));
pre[6][0] = 1;
for (int i = 0; i < balls.size(); i++)
{
vector<vector> dp(13, vector(iTotal + 1));
for (int colorDiff = 0; colorDiff < 13; colorDiff++)
{
for (int selBallNum = 0; selBallNum <= iTotal; selBallNum++)
{
if (0 == pre[colorDiff][selBallNum])
{
continue;
}
for (int k = 0; k <= balls[i]; k++)
{
int iNewColorDiff = colorDiff;
if (0 == k)
{
iNewColorDiff–;
}
if (balls[i] == k)
{
iNewColorDiff++;
}
if ((iNewColorDiff<0) || (iNewColorDiff >12))
{
continue;
}
const int iNewSelBallNum = selBallNum + k;
if ( iNewSelBallNum > iTotal)
{
continue;
}
dp[iNewColorDiff][iNewSelBallNum] += pre[colorDiff][selBallNum] * combinations[balls[i]][k];
}
}
}
pre.swap(dp);
}
double dNum = 0, dEqualNum = 0;
for (int colorDiff = 0; colorDiff < 13; colorDiff++)
{
const int selBallNum = iTotal / 2;
//for (int selBallNum = 0; selBallNum <= iTotal; selBallNum++)
{
const double dAdd = (double)pre[colorDiff][selBallNum] ;
dNum += dAdd;
if (6 == colorDiff)
{
dEqualNum += dAdd;
}
}
}
return (double)dEqualNum / dNum;
}
int m_c;
};
【深度优先搜索】【组合数学】【动态规划】1467.两个盒子中球的颜色数相同的概率,# 算法题,算法,深度优先,c++,力扣,组合数学,概率,颜色

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业

。也就是我们常说的专业的人做专业的事。 |
|如果程序是一条龙,那算法就是他的是睛|

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

【深度优先搜索】【组合数学】【动态规划】1467.两个盒子中球的颜色数相同的概率,# 算法题,算法,深度优先,c++,力扣,组合数学,概率,颜色文章来源地址https://www.toymoban.com/news/detail-833482.html

到了这里,关于【深度优先搜索】【组合数学】【动态规划】1467.两个盒子中球的颜色数相同的概率的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • LeetCode-1483. 树节点的第 K 个祖先【树 深度优先搜索 广度优先搜索 设计 二分查找 动态规划】

    给你一棵树,树上有 n 个节点,按从 0 到 n-1 编号。树以父节点数组的形式给出,其中 parent[i] 是节点 i 的父节点。树的根节点是编号为 0 的节点。 树节点的第 k 个祖先节点是从该节点到根节点路径上的第 k 个节点。 实现 TreeAncestor 类: TreeAncestor(int n, int[] parent) 对树和父

    2024年04月16日
    浏览(39)
  • 动态规划+深度优先搜索—,java面试问的问题都答上来了

    第一行表示挖得最多地雷时的挖地雷的顺序,各地窖序号间以一个空格分隔,不得有多余的空格。 第二行只有一个数,表示能挖到的最多地雷数。 输入输出样例 输入 1 5 10 8 4 7 6 1 1 1 0 0 0 0 1 1 1 输出 1 1 3 4 5 27 说明/提示 【题目来源】 NOIP 1996 提高组第三题 解题代码:(动态规

    2024年04月11日
    浏览(34)
  • 【洛谷 P4017】最大食物链计数 题解(深度优先搜索+动态规划+邻接表+记忆化搜索+剪枝)

    你知道食物链吗?Delia 生物考试的时候,数食物链条数的题目全都错了,因为她总是重复数了几条或漏掉了几条。于是她来就来求助你,然而你也不会啊!写一个程序来帮帮她吧。 给你一个食物网,你要求出这个食物网中最大食物链的数量。 (这里的“最大食物链”,指的

    2024年04月15日
    浏览(31)
  • 【二十】【动态规划】879. 盈利计划、377. 组合总和 Ⅳ、96. 不同的二叉搜索树 ,三道题目深度解析

    动态规划就像是解决问题的一种策略,它可以帮助我们更高效地找到问题的解决方案。这个策略的核心思想就是将问题分解为一系列的小问题,并将每个小问题的解保存起来。这样,当我们需要解决原始问题的时候,我们就可以直接利用已经计算好的小问题的解,而不需要重

    2024年01月16日
    浏览(39)
  • 数论——组合数学入门

    排列就是指从给定个数的元素中取出指定个数的元素进行排序;组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。--------OI Wiki 加法原理,就好比一个工作,有 (n) 个解决的方案,第 (i) 项方案有 (a_{i}) 种不同的实现方式,所以这个工作有 (a_{1}+a_{2

    2024年02月05日
    浏览(40)
  • 数学-排列组合的理解

    排列是有顺序的排队,从 m 中选择 n 个进行排队,第 1 个有 m-0 种选择,第 2 个有 m-1 种选择,自然的,第 n 个有 m-(n-1) 种选择。因为有顺序,可以看出前面的选择,会后面影响后面的选择,所以将选择每个的可能数相乘。 A m n = ( m − 0 ) ∗ ( m − 1 ) ∗ . . . ∗ ( m − ( n − 1

    2023年04月16日
    浏览(43)
  • 离散数学组合计数

    主要内容 加法法则和乘法法则 排列与组合 二项式定理与组合恒等式 多项式定理 加法法则 乘法法则 分类处理与分步处理 问题1:某旅游团从南京到上海,可以乘骑车,也可以乘火车,假定骑车每日有三班,火车每日有2班,那么一天中从南京到上海共有多少种不同的走法?

    2024年02月01日
    浏览(40)
  • 数学算法&组合与排序

    一句话总结:组合得次序是否重要,是否可重复,决定了组合数量 组合可以是现实的一切事物、例如 [衣服,鞋子,眼镜...] 等等, 也可以表示一组数字 [1, 2, 3, 4, 5] ,从个人的使用角度来说,更多的意义代表的是数字,因此下面都会以数字作为案例。 排序是组合的一部分,

    2024年02月06日
    浏览(43)
  • 【ACM组合数学 | 错排公式】写信

    题目链接:https://ac.nowcoder.com/acm/contest/54484/B 题意很简单,但是数据范围偏大。 首先来推导一下错排公式: [D(n) = n!sum_{k=0}^{n}frac{(-1)^k}{k!}] 设一个函数: [S_i表示一个排列中p_i = i的方案数] 那么我们可以知道: [D(n) = n! - |cup_{i=1}^{n}S_i|] 这个表示 所有方案数 减去 至少有

    2023年04月17日
    浏览(37)
  • P3799 妖梦拼木棒(组合数学)

                                                                                                       (学习自用) 提交65.01k 通过15.35k 时间限制1.00s 内存限制125.00MB 上道题中,妖梦斩了一地的木棒,现在她想要将木棒拼起来。 有 n 根木棒,现在从中选 44 根,

    2024年02月01日
    浏览(33)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包