机器学习——正规方程

这篇具有很好参考价值的文章主要介绍了机器学习——正规方程。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

正规方程的基本介绍

之前我们使用梯度下降算法求代价函数J(θ)的最小值,而梯度下降算法是通过一步步不断地迭代来收敛到全局最小值,如下

机器学习——正规方程,机器学习,机器学习,人工智能,算法

而正规方程则是另一种求解J(θ)最小值的方法,并且正规方程不需要通过迭代,而是一次性得到θ的最优值

正规方程的基本概念如下(省略证明过程,记住这个公式就行)

机器学习——正规方程,机器学习,机器学习,人工智能,算法

机器学习——正规方程,机器学习,机器学习,人工智能,算法文章来源地址https://www.toymoban.com/news/detail-833659.html

正规方程和梯度下降的对比 

  • 梯度下降算法需要不断尝试不同的学习率α,直到选择到一个合适的值,这是一个额外的工作;而正规方程不需要选择学习率;
  • 梯度下降算法是一个迭代算法,需要通过不断地迭代得到θ的最优值;正规方程不需要迭代,基本是一次性可以得到θ的最优值;
  • 梯度下降算法在特征变量很多的情况下,也能运行的很好,哪怕有几百万个特征向量,但是正规方程需要进行矩阵的运算,所以当特征变量很多的时候,正规方程的计算速度不一定比梯度下降的迭代要快;
  • 那么特征数量n多少算大呢?一般如果n超过一万,就考察使用梯度下降或其他算法,如果n在一万以内,可以使用正规方程;
  • 对于线性回归这个特定的模型,正规方程法是一个比梯度下降算法更快的替代算法,但是正规方程不一定适用于其他的学习算法,而梯度下降算法的使用范围比正规方程更广泛。所以还是要根据具体的算法,具体的问题以及特征量的数量来进行最终选择;

到了这里,关于机器学习——正规方程的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能-机器学习-深度学习-分类与算法梳理

    目前人工智能的概念层出不穷,容易搞混,理清脉络,有益新知识入脑。 为便于梳理,本文只有提纲,且笔者准备仓促,敬请勘误,不甚感激。 符号主义(Symbolists) 基于逻辑推理的智能模拟方法。最喜欢的算法是:规则和决策树。符号主义的代表性成果有启发式程序、专家系

    2024年02月03日
    浏览(91)
  • 人工智能|机器学习——DBSCAN聚类算法(密度聚类)

    DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,簇集的划定完全由样本的聚集程度决定。聚集程度不足以构成簇落的那些样本视为噪声点,因此DBSCAN聚类的方式也可以用于异常点的检测。 算法的关键在于样本的‘聚集程度’,这个程度的刻画

    2024年04月10日
    浏览(83)
  • 《人工智能-机器学习》数据预处理和机器学习算法(以企鹅penguins数据集为例)

    本项目使用到的数据集链接: https://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/6tree/penguins_raw.csv 加载给定或者自行选定的数据集,对数据进行查看和理解,例如样本数量,各特征数据类型、分布、特征和标签所表达的含义等,然后对其进行数据预处理工作,包括但不限于对敏感数据

    2024年02月10日
    浏览(61)
  • 从人工智能到机器学习到深度学习、强化学习,以及相关的算法原理、应用场景等方面对人工智能技术的研究进行全面的综述

    作者:禅与计算机程序设计艺术 2021年是一个重要的历史节点,数字化时代正在席卷全球各个角落。大数据、云计算、区块链等新兴技术带动着各行各业的变化与革命,机器学习(ML)、深度学习(DL)、强化学习(RL)等AI技术也越发成熟。随之而来的,伴随着人工智能应用的

    2024年02月07日
    浏览(78)
  • 机器学习——正规方程

    之前我们使用梯度下降算法求代价函数J(θ)的最小值,而梯度下降算法是通过一步步不断地迭代来收敛到全局最小值,如下 而正规方程则是另一种求解J(θ)最小值的方法,并且正规方程不需要通过迭代,而是一次性得到θ的最优值 正规方程的基本概念如下(省略证明过程,记

    2024年02月21日
    浏览(31)
  • 探索人工智能 | 模型训练 使用算法和数据对机器学习模型进行参数调整和优化

    模型训练是指 使用算法和数据对机器学习模型进行参数调整和优化 的过程。模型训练一般包含以下步骤:数据收集、数据预处理、模型选择、模型训练、模型评估、超参数调优、模型部署、持续优化。 数据收集是指为机器学习或数据分析任务收集和获取用于训练或分析的数

    2024年02月12日
    浏览(59)
  • 【Python】人工智能-机器学习——不调库手撕演化算法解决函数最小值问题

    现在有一个函数 3 − s i n 2 ( j x 1 ) − s i n 2 ( j x 2 ) 3-sin^2(jx_1)-sin^2(jx_2) 3 − s i n 2 ( j x 1 ​ ) − s i n 2 ( j x 2 ​ ) ,有两个变量 x 1 x_1 x 1 ​ 和 x 2 x_2 x 2 ​ ,它们的定义域为 x 1 , x 2 ∈ [ 0 , 6 ] x_1,x_2in[0,6] x 1 ​ , x 2 ​ ∈ [ 0 , 6 ] ,并且 j = 2 j=2 j = 2 ,对于此例,所致对于 j =

    2024年01月20日
    浏览(76)
  • 毕业设计选题-基于深度学习的车道线检测算法识别系统 人工智能 机器学习 卷积神经网络

    目录 前言 课题背景和意义 实现技术思路 一、车道线检测方法 1.1 卷积神经网络 1.2 注意力机制 二、 数据集 三、实验及结果分析 3.1 实验环境搭建 3.2 模型训练 实现效果图样例 最后     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学

    2024年02月22日
    浏览(79)
  • 毕业设计-基于深度学习玉米叶病虫害识别系统 YOLO python 机器学习 目标检测 人工智能 算法

    目录 前言 设计思路 一、课题背景与意义 二、算法理论原理 2.1 卷积神经网络 2.2 YOLOv5算法 三、检测的实现 3.1 数据集 3.2 实验环境搭建 3.3 实验及结果分析 实现效果图样例 最后        📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准

    2024年02月03日
    浏览(136)
  • 【机器学习】正规方程与梯度下降API及案例预测

    回归模型是机器学习中用于预测连续数值(实数)的模型,通常用于解决回归问题。两种常见的回归模型求解方法是正规方程和梯度下降。 正规方程(Normal Equation) 正规方程是一种封闭解法,用于直接计算线性回归模型的权重(系数)。 原理 : 给定一个线性回归模型的数

    2024年02月05日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包