半理想架构的Doherty功率放大器理论与仿真-基于GAN器件CGH40010F

这篇具有很好参考价值的文章主要介绍了半理想架构的Doherty功率放大器理论与仿真-基于GAN器件CGH40010F。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

半理想架构的Doherty功率放大器理论与仿真-基于GAN器件CGH40010F

理想架构的Doherty功率放大器理论与仿真中已经介绍了如何在ADS中使用理想电流源来对DPA的架构进行仿真。但是理想的电流源太理想了,电压、电流的许多行为都是需要自己使用数学公式去严格定义,稍微出错就会出现问题。

那我们能不能使用现有的管子的模型来进行DPA架构的模拟呢?当然可行,但是必定会和纯理想状态有些出入。

本文工程下载:半理想架构的Doherty功率放大器理论与仿真ADS工程-基于GAN器件CGH40010F
不着急的穷学生和穷工程师可以私信我,打6-8折哦!

下载完成后手动添加CGH40010F库路径,后运行HB1TonePAE_Pswp_Doherty原理图即可

那么本文,我们来看看怎么用Cree家的CGH40010F来模拟DPA的调制行为

1、经典Doherty架构

参考Switchmode RF and Microwave Power Amplifiers里面的图片,Z2的阻抗为Ropt(B类最佳基波阻抗),Z1是四分之一波长阻抗变换器,将Ropt/2的阻抗变换为50欧姆,因此其阻抗为(Ropt/2*50)^0.5欧姆。至于峰值功放前的四分之一波长线,那个是相位延迟的,因为载波功放那边有一个四分之一波长线了,为了让合路的相位一致,必须也要在峰值功放加上一个。
cgh40010 封装模型,Doherty,硬件工程,射频工程,硬件架构

2、ADS各部分设计

2.1 单频点的功分器

单频率的功分器的设计可以参考12、ADS使用记录之功分器设计。但是我们此处是理想仿真,可以直接使用理想微带线进行设计,因此直接参考基于ADS的不等分威尔金森功分器设计,把其中的不等分比设置为1就行了。基于ADS的不等分威尔金森功分器设计中已经介绍了设计公式和代码,直接运行:

% 等分比kk=1
kk=1;
Z0=50;
Zu=Z0*sqrt((1+kk)/kk^1.5);
Zd=Z0*sqrt(kk^0.5*(1+kk));
R=Z0*(kk^0.5+kk^-0.5);
disp(['Z0的特征阻抗为:',num2str(Z0),'欧姆']);
disp(['Z02的特征阻抗为:',num2str(Zd),'欧姆']);
disp(['Z03的特征阻抗为:',num2str(Zu),'欧姆']);
disp(['R的特征阻抗为:',num2str(R),'欧姆']);

cgh40010 封装模型,Doherty,硬件工程,射频工程,硬件架构
因此设计出来就是:
cgh40010 封装模型,Doherty,硬件工程,射频工程,硬件架构
cgh40010 封装模型,Doherty,硬件工程,射频工程,硬件架构

2.2 CGH40010F的输入匹配与相位延迟线设计

对于CGH40010F这个管子,一般源牵引的数值都是10欧姆附近。如16、ADS使用记录之AB类功放设计中的这张图:
cgh40010 封装模型,Doherty,硬件工程,射频工程,硬件架构
当然,兄弟们也可以使用番外5:ADS功放设计之负载牵引与源牵引里面的介绍来自己操作一下。我们这边功分器的输出阻抗是50欧姆,源牵引数值是10欧姆,因此我们需要把50欧姆匹配到10欧姆。此处我们是原型验证,因此直接使用四分之一波长阻抗变换器即可:
cgh40010 封装模型,Doherty,硬件工程,射频工程,硬件架构
注意看四分之一阻抗变换器后面的延迟线,注意其阻抗和后面的端口阻抗都是10欧姆,运行仿真,效果达标了:
cgh40010 封装模型,Doherty,硬件工程,射频工程,硬件架构

2.3 使用去嵌入封装和最佳B类阻抗Ropt

我们使用的管子CGH40010F都是经过封装的,因此要进行理想的DPA仿真需要使用去嵌入封装的网络,这是一种非常简单的仿真做法。当然,在我们实际设计匹配电路的时候,我们一般把封装网络当成匹配网络的一部分来设计,当然这个就比较复杂了,在此不多说。

CGH40010F的封装(左)和去封装网络(右)如下:
cgh40010 封装模型,Doherty,硬件工程,射频工程,硬件架构
直接连在管子的漏极,再把另一个输出端口当成新的电流源平面的漏极即可:
cgh40010 封装模型,Doherty,硬件工程,射频工程,硬件架构

我们此处仿真就不考虑单管的具体工作类型了,因此直接把阻抗匹配到最佳B类阻抗Ropt。在此处仿真时,我们假设电源电压VDD=25V,考虑膝点电压后VDD=22V,假设基波电流饱和是为1.2A,那么Ropt可以计算为:22/1.2=18.33欧姆。

因此此处假设Ropt=18.33。

2.4 输入耦合、稳定电路、偏置隔离

输入加入电容耦合、在栅极添加RC稳定电路、使用四分之一波长线当供电线,最终DPA的原理图如下:
cgh40010 封装模型,Doherty,硬件工程,射频工程,硬件架构

3、结果分析

此处仿真时载波功放栅极电压为-3V,峰值功放栅极电压为-6V,在2500MHz进行仿真,这样能让回退看起来明显一点,首先观察效率曲线,可以看到饱和输出功率为44.5dBm左右,回退6dB效率为60%,饱和漏极效率为68%左右
cgh40010 封装模型,Doherty,硬件工程,射频工程,硬件架构
利用漏极源平面的波形的傅里叶分量来计算负载阻抗的调制情况,可以看到非常经典的阻抗调制曲线,载波功放的调制曲线(左)和峰值功放的负载调制曲线(右),其中载波功放的调制曲线随着功率增大由2Ropt变化为Ropt,峰值功放的负载调制曲线随着功率增大由无穷变化为Ropt
cgh40010 封装模型,Doherty,硬件工程,射频工程,硬件架构

4、与理论的电压电流的对比

理想架构的Doherty功率放大器理论与仿真中,观察峰值功放和载波功放的电压电流,由于是1:1等分的,在饱和时峰值功放和载波功放的输出功率相同,输出电压、电流也一致,如下所示:
cgh40010 封装模型,Doherty,硬件工程,射频工程,硬件架构

此处仿真的波形如下,基本差不多吧:
cgh40010 封装模型,Doherty,硬件工程,射频工程,硬件架构文章来源地址https://www.toymoban.com/news/detail-833665.html

到了这里,关于半理想架构的Doherty功率放大器理论与仿真-基于GAN器件CGH40010F的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 水声功率放大器的作用是什么

        水声功率放大器是一种专门用于水声设备的高功率电子设备,主要用于提升水下信号的传输距离和保证语音清晰度。它的作用在水下通信、水下测量、海洋科学等领域都非常重要。 其主要作用有以下几个方面: 增强信号传输距离 水声信号在水中传播会受到各种因素的影

    2024年02月16日
    浏览(37)
  • 安泰高功率超声换能器驱动电源——ATA-4012B高压功率放大器

    超声换能器是一种能把高频电能转化为机械能的一种装置,一般有磁致伸缩式和压电陶瓷式。压电驱动放大器是基于驱动需要大电压、大功率来使用,超声换能够器有的利用换能器材料的物理效应:压电效应、磁致伸缩、电致伸缩等,有的利用换能器结构中的电动力效应:电

    2024年01月24日
    浏览(27)
  • 超声医疗高压功率放大器ATA-4315技术参数

    超声波检查或超声诊断,是一种非侵入性的医学检查方法,它利用了声波的高频振动来观察和评估人体内部的器官和组织。它基于不同密度和组织结构中传播的原理。通过将ultrasound(超声波)传递到身体的特定区域,并记录反射回来的声波,我们可以获取关于内部结构的详细信

    2024年02月16日
    浏览(25)
  • 模拟电路设计(32)---乙类推挽功率放大器

    由于甲类功率放大器的静态工作电流很大,效率不会超过50%,而乙类功放静态电流为零,这样效率得以提高。但乙类工作状态,晶体管只有半个周期工作,信号波形被削去一半,将产生严重的失真。 如果使两只相同的晶体管交替工作,一只工作在信号正半周期,另一只工作在

    2023年04月10日
    浏览(32)
  • 高频丙类谐振功率放大器【Multisim】【高频电子线路】

    目录 一、实验目的与要求 二、实验仪器 三、实验内容与测试结果 1、观察输入、输出波形 2、观察不同工作状态下的集电极电流波形 3、测试负载特性 4、测试集电极调制特性 四、实验结果分析 五、参考资料 1、通过实验加深理解高频谐振功率放大器电路结构和工作原理 2、

    2024年02月09日
    浏览(30)
  • L频段GaN功率放大器的设计关键点

    氮化镓技术的不断进步促使设备在更高的功率、电源电压和频率下工作。 ​图1 QPD1013 晶体管的照片 如图1所示, QPD1013晶体管采用0.50 μm GaN-on-SiC技术。它采用具有成本效益的6.6x7.2 mm DFN(双边扁平无引脚)封装,与传统的金属陶瓷封装相比,可以实现更简单的PCB组装。 尽管GaN晶

    2023年04月23日
    浏览(26)
  • 向海图强!水声功率放大器助力海洋技术研究及海洋经济扬帆远航!

    昨天是第十五个“世界海洋日”,今年的世界海洋日宣传日主题为“保护海洋生态系统人与自然和谐共生”,旨在呼吁全世界人们关注海洋自然环境现况,帮助人们进一步了解我们的海洋家园,保持健康可持续性的的海洋生态系统发展。 作为陆海兼备的国家,我国海洋面积是

    2024年02月09日
    浏览(34)
  • 立创开源丨TDA1521/TDA2616_双声道HIFi功率放大器

            当数字功放芯片如潮水一般铺天盖地时,追求音质的我还是更喜欢用模拟功放芯片,特别推荐90年代产的一款飞利浦HiFi芯片TDA1521/TDA2616,该芯片发热低,音质好,20多年了仍然热销不衰,用来制作桌面功放那是非常棒的一款芯片,这种模拟功放出来的声音比数字功放

    2024年02月12日
    浏览(107)
  • 高压功率放大器在脉冲X射线源技术及火星X射线通信中的应用

    实验名称: 高速调制脉冲X射线源技术及火星X射线通信应用研究 研究方向: 通信技术 测试目的: 火星是深空探测的热点区域,随着对火星探测的深入,未来火星探测器将面临传统通信方式难以应对的恶劣情况,例如火星大气进入段黑障区和火星沙尘暴环境。因此,探索新型

    2024年02月01日
    浏览(31)
  • 番外9:使用ADS对射频功率放大器进行非线性测试1(以IMD3测试为例)

    一般可以有多种方式对射频功率放大器的非线性性能进行测试,包括IMD3、ACPR(ACLR)等等,其中IMD3的实际测试较为简单方便不需要太多的仪器。那么在ADS中如何对设计的IMD3性能进行测试呢,下面进行介绍。 番外9:使用ADS对射频功率放大器进行非线性测试1(以IMD3测试为例)

    2023年04月20日
    浏览(21)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包