【动态规划专栏】专题一:斐波那契数列模型--------1.第N个泰波那契数

这篇具有很好参考价值的文章主要介绍了【动态规划专栏】专题一:斐波那契数列模型--------1.第N个泰波那契数。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本专栏内容为:算法学习专栏,分为优选算法专栏,贪心算法专栏,动态规划专栏以及递归,搜索与回溯算法专栏四部分。 通过本专栏的深入学习,你可以了解并掌握算法。

💓博主csdn个人主页:小小unicorn
⏩专栏分类:动态规划专栏
🚚代码仓库:小小unicorn的代码仓库🚚
🌹🌹🌹关注我带你学习编程知识

题目来源

本题来源为:

Leetcode1137. 第 N 个泰波那契数

题目描述

泰波那契序列 Tn 定义如下:
T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2
给你整数 n,请返回第 n 个泰波那契数 Tn 的值。

【动态规划专栏】专题一:斐波那契数列模型--------1.第N个泰波那契数,算法专栏,# 动态规划算法专栏,动态规划,算法

题目解析

这里我们首先可以先将题目的公式变形一下:
【动态规划专栏】专题一:斐波那契数列模型--------1.第N个泰波那契数,算法专栏,# 动态规划算法专栏,动态规划,算法
通过一个简单例子来理解此题目:
【动态规划专栏】专题一:斐波那契数列模型--------1.第N个泰波那契数,算法专栏,# 动态规划算法专栏,动态规划,算法
T0 T1 T2值题目中已经给出,而T4的值是T0 +T1+ T2的结果,而T5的值是T1 +T2+ T3的结果,依次内推…

算法原理

在讲解此题的算法原理之前,我们先了解一下动态规划:
[动态规划 dynamic programming」是一个重要的算法范式,它将一个问题分解为一系列更小的子问题,并通过存储子问题的解来避免重复计算,从而大幅提升时间效率。

可能此概念对于初学者来说很抽象,我们通过本题为例,给出动态规划的一般解决思路:

动态规划做题流程,一般会定义一个dp(动态规划的缩写)(一位或者二维数组)

然后想办法把里面的值给填满,里面的某一个值可能就是我们的最终结果!

举个例子:
【动态规划专栏】专题一:斐波那契数列模型--------1.第N个泰波那契数,算法专栏,# 动态规划算法专栏,动态规划,算法

动态规划基本上分为五步:
1.状态表示
2.状态转移方程
3.初始化
4.填表顺序
5.返回值

其中状态转移方程由状态表示推出,而3.4.5步则为处理细节问题。
接下来将通过本题为例来讲解这五步如何处理:

1.状态表示

首先什么是状态表示呢?
简单点的说:状态表示就是dp表里面值的含义

那么具体怎么知道里面值所代表的含义呢?
基础有三种方式

1.1题目要求
1.2经验+题目要求(大多数)
1.3分析问题过程中,发现重复子问题(难点)

当然也不仅仅与此,后面也会再接触更多的方法!
那么根据本题目要求,
dp[i]表示:第i个泰波那契的值
【动态规划专栏】专题一:斐波那契数列模型--------1.第N个泰波那契数,算法专栏,# 动态规划算法专栏,动态规划,算法

2.状态转移方程

状态转移方程是什么?
通俗来说,就是推出一个式子,让dp[i]等于什么

根据本题要求,我们计算一个值时,需要知道它前面的三个值。
【动态规划专栏】专题一:斐波那契数列模型--------1.第N个泰波那契数,算法专栏,# 动态规划算法专栏,动态规划,算法
计算i位置的值(dp[i])时,需要知道i-1,i-2,i-3的值,那么i-1位置的值又怎么求呢?在回顾一下我们的状态表示,dp[i]表示:第i个泰波那契的值 那么i-1位置的值不就是dp[i-1],以此内推…

分析到这,我们的状态转移方程已经出来了:
【动态规划专栏】专题一:斐波那契数列模型--------1.第N个泰波那契数,算法专栏,# 动态规划算法专栏,动态规划,算法

dp[i] = dp[i-3] + dp[i-2] + dp[i-1]

3.初始化

什么是初始化?
就是要保证填表的时候不越界
【动态规划专栏】专题一:斐波那契数列模型--------1.第N个泰波那契数,算法专栏,# 动态规划算法专栏,动态规划,算法
那么怎么填,其实就是根据状态转移方程,害怕越界访问,进行相关初始化 而本题的题目其实已经告诉我们了:
【动态规划专栏】专题一:斐波那契数列模型--------1.第N个泰波那契数,算法专栏,# 动态规划算法专栏,动态规划,算法
当i为0,1,2时就会产生越界访问,而本题的题目已经将这三个位置的值已经告诉我们了:
因此初始化为:

dp[0]=0
dp[1]=1
dp[2]=2

4.填表顺序

根据状态转移方程,我们计算dp[i]位置的值需要i-1与i-2位置的值,因此我们的填表顺序为:从左往右

5.返回值

根据题目要求返回第 n 个泰波那契数 Tn 的值。
而我们的状态表示 :dp[i]表示:第i个泰波那契的值

因此返回dp[n]

代码实现

动态规划的代码基本就是固定的四步:

1.创建dp表
2.初始化
3.填表
4.返回值
class Solution 
{
public:
    int tribonacci(int n) 
    {
        // 1.创建dp表
        // 2.初始化
        // 3.填表
        // 4.返回值
      
        //处理一下边界情况:
        if(n==0)
            return 0;
        if(n==1||n==2)
            return 1;
        //创建dp表
        vector<int> dp(n+1);
        //初始化
        dp[0]=0;
        dp[1]=dp[2]=1;
        //填表:
        for(int i=3;i<=n;i++)
        {
            dp[i] = dp[i-1]+ dp[i-2] +dp[i-3];
        }
        //返回值:
        return dp[n];
    }
};

注意n的取值范围:

0 <= n <= 37

因此要处理一下边界情况:

 //处理一下边界情况
 if(n==0)
    return 0;
 if(n==1||n==2)
    return 1;

时间复杂度:O(N)
空间复杂度:O(N)文章来源地址https://www.toymoban.com/news/detail-833919.html

到了这里,关于【动态规划专栏】专题一:斐波那契数列模型--------1.第N个泰波那契数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • C++算法 —— 动态规划(1)斐波那契数列模型

    每一种算法都最好看完第一篇再去找要看的博客,因为这样会帮你梳理好思路,看接下来的博客也就更轻松了。当然,我也会尽量在写每一篇时都可以让不懂这个算法的人也能边看边理解。 动规的思路有五个步骤,且最好画图来理解细节,不要怕麻烦。当你开始画图,仔细阅

    2024年02月10日
    浏览(46)
  • 动态规划入门:斐波那契数列模型以及多状态(C++)

        动态规划(Dynamic programming,简称 DP)是一种解决多阶段决策问题的算法思想。它将问题分解为多个阶段,并通过保存中间结果来避免重复计算,从而提高效率。 动态规划的解题步骤一般分为以下几步: 思考状态表示,创建dp表(重点) 分析出状态转移方程(重点) 初始化 确定

    2024年02月11日
    浏览(44)
  • Java【动态规划】斐波那契数列模型, 图文思路详解 + 代码实现

    本篇总结动态规划中的 斐波那契数列模型 的解法和思路 按照以下流程进行分析题目和代码编写 思路分析步骤 代码编写步骤 1, 状态表示 1, 构造 dp 表 2, 状态转移方程 2, 初始化+边界处理 3, 初始化 3, 填表(抄状态转移方程) 4, 填表顺序 4, 返回结果 5, 返回值 / OJ链接 题目分析

    2024年02月08日
    浏览(59)
  • 动态规划入门篇——斐波那契数列与爬楼梯问题

           动态规划(Dynamic Programming,简称DP)是运筹学的一个分支,也是求解多阶段决策过程最优化问题的一种方法。它主要用来解决一类最优化问题,通过将复杂问题分解成若干个子问题,并综合子问题的最优解来得到原问题的最优解。动态规划的核心在于对问题的状态进

    2024年03月14日
    浏览(43)
  • Java数据结构与算法:动态规划之斐波那契数列

    大家好,我是免费搭建查券返利机器人赚佣金就用微赚淘客系统3.0的小编。在这寒冷的季节里,让我们一同探讨Java中的动态规划,重点关注解决问题的经典代表之一——斐波那契数列。 动态规划简介 动态规划是一种解决问题的数学方法,通常用于优化递归算法。它通过将问

    2024年01月22日
    浏览(48)
  • DAY42:动态规划(二)斐波那契数列+爬楼梯+最小花费爬楼梯

    斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: 给定 n ,请计算 F(n) 。 示例 1: 示例 2: 示例 3: 提示: 0 = n = 30 思路:动规五步 确定dp数组和数组下标含义 DP题目都需要定义一维

    2024年02月13日
    浏览(57)
  • (动态规划) 剑指 Offer 10- I. 斐波那契数列 ——【Leetcode每日一题】

    难度:简单 写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N) )。斐波那契数列的定义如下: F(0) = 0, F(1) = 1 F(N) = F(N - 1) + F(N - 2), 其中 N 1. 斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。 答案需要取模 1e9+7(1000000007),如计

    2024年02月12日
    浏览(56)
  • LeetCode刷题笔记【29】:动态规划专题-1(斐波那契数、爬楼梯、使用最小花费爬楼梯)

    动态规划(DP,Dynamic Programming)。 其解题思路对比 贪心算法的“直接选局部最优然后推导出全局最优” ;倾向于“ 由之前的结果推导得到后续的结果 ”。 很多时候二者具有相似性,不必死扣概念。 动态规划题目的核心是dp数组的概念和构建(递推公式); 所以具体的解题步骤

    2024年02月09日
    浏览(40)
  • 动态规划专训1——泰波那契数列模型

    动态规划的思想:将一个问题分隔为若干个子问题,完成子问题得到结构再得到最终的答案 动态规划往往解题步骤固定,分为以下几步 1.找出状态表示 2.完成状态转移方程 3.初始化 4.填表顺序 5.返回值 后面三步偏重细节,二解题的核心就在于前两步,所以要想练好动态规划

    2024年04月29日
    浏览(36)
  • 蓝桥杯专题-试题版-【地宫取宝】【斐波那契】【波动数列】【小朋友排队】

    点击跳转专栏=Unity3D特效百例 点击跳转专栏=案例项目实战源码 点击跳转专栏=游戏脚本-辅助自动化 点击跳转专栏=Android控件全解手册 点击跳转专栏=Scratch编程案例 点击跳转=软考全系列 点击跳转=蓝桥系列 专注于 Android/Unity 和各种游戏开发技巧,以及 各种资源分享 (网站、

    2024年02月11日
    浏览(58)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包