移动机器人激光SLAM导航(五):Cartographer SLAM 篇

这篇具有很好参考价值的文章主要介绍了移动机器人激光SLAM导航(五):Cartographer SLAM 篇。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

参考

  • Cartographer 官方文档
  • Cartographer 从入门到精通

1. Cartographer 安装

1.1 前置条件

  • 推荐在刚装好的 Ubuntu 16.04 或 Ubuntu 18.04 上进行编译
  • ROS 安装:ROS学习1:ROS概述与环境搭建

1.2 依赖库安装

  • 资源下载完解压并执行以下指令
    • https://pan.baidu.com/s/1LWqZ4SOKn2sZecQUDDXXEw?pwd=j6cf
    $ sudo chmod 777 auto-carto-build.sh
    $ ./auto-carto-build.sh
    

1.3 编译

本文只编译 cartographer_ros,以下为同时开三个终端操作

$ mkdir -p cartographer_ws/src
$ cd ~
$ git clone https://github.com/xiangli0608/cartographer_detailed_comments_ws
$ mv ~/cartographer_detailed_comments_ws/src/cartographer_ros ~/cartographer_ws/src
$ cd ~/cartographer_ws
$ catkin_make

2. Cartographer 运行

2.1 数据集下载

  • 百度网盘链接(rslidar-outdoor-gps.bag、landmarks_demo_uncalibrated.bag)
    • https://pan.baidu.com/s/1leRr4JDGg61jBNCwNlSCJw?pwd=5nkq

2.2 配置文件

  • lx_rs16_2d_outdoor.launch

    <launch>
      <!-- bag 的地址与名称(根据自己情况修改,建议使用绝对路径) -->
      <arg name="bag_filename" default="/home/yue/bag/rslidar-outdoor-gps.bag"/>
    
      <!-- 使用 bag 的时间戳 -->
      <param name="/use_sim_time" value="true" />
    
      <!-- 启动 cartographer -->
      <node name="cartographer_node" pkg="cartographer_ros"
          type="cartographer_node" args="
              -configuration_directory $(find cartographer_ros)/configuration_files
              -configuration_basename lx_rs16_2d_outdoor.lua"
          output="screen">
        <remap from="points2" to="rslidar_points" />
        <remap from="scan" to="front_scan" />
        <remap from="odom" to="odom_scout" />
        <remap from="imu" to="imu" />
      </node>
    
      <!-- 生成 ros 格式的地图 -->
      <node name="cartographer_occupancy_grid_node" pkg="cartographer_ros"
          type="cartographer_occupancy_grid_node" args="-resolution 0.05" />
    
      <!-- 启动 rviz -->
      <node name="rviz" pkg="rviz" type="rviz" required="true"
          args="-d $(find cartographer_ros)/configuration_files/lx_2d.rviz" />
    
      <!-- 启动 rosbag -->
      <node name="playbag" pkg="rosbag" type="play"
          args="--clock $(arg bag_filename)" />
    
    </launch>
    
  • lx_rs16_2d_outdoor.lua

    include "map_builder.lua"
    include "trajectory_builder.lua"
    
    options = {
      map_builder = MAP_BUILDER,               -- map_builder.lua的配置信息
      trajectory_builder = TRAJECTORY_BUILDER, -- trajectory_builder.lua的配置信息
      
      map_frame = "map"-- 地图坐标系的名字
      tracking_frame = "imu_link"-- 将所有传感器数据转换到这个坐标系下
      published_frame = "footprint"-- tf: map -> footprint
      odom_frame = "odom"-- 里程计的坐标系名字
      provide_odom_frame = false-- 是否提供odom的tf,如果为true,则tf树为map->odom->footprint
                                                -- 如果为false tf树为map->footprint
      publish_frame_projected_to_2d = false-- 是否将坐标系投影到平面上
      --use_pose_extrapolator = false,           -- 发布tf时是使用pose_extrapolator的位姿还是前端计算出来的位姿
    
      use_odometry = false-- 是否使用里程计,如果使用要求一定要有odom的tf
      use_nav_sat = false-- 是否使用gps
      use_landmarks = false-- 是否使用landmark
      num_laser_scans = 0-- 是否使用单线激光数据
      num_multi_echo_laser_scans = 0-- 是否使用multi_echo_laser_scans数据
      num_subdivisions_per_laser_scan = 1-- 1帧数据被分成几次处理,一般为1
      num_point_clouds = 1-- 是否使用点云数据
      
      lookup_transform_timeout_sec = 0.2-- 查找tf时的超时时间
      submap_publish_period_sec = 0.3-- 发布数据的时间间隔
      pose_publish_period_sec = 5e-3,
      trajectory_publish_period_sec = 30e-3,
    
      rangefinder_sampling_ratio = 1.-- 传感器数据的采样频率
      odometry_sampling_ratio = 1.,
      fixed_frame_pose_sampling_ratio = 1.,
      imu_sampling_ratio = 1.,
      landmarks_sampling_ratio = 1.,
    }
    
    MAP_BUILDER.use_trajectory_builder_2d = true
    
    TRAJECTORY_BUILDER_2D.use_imu_data = true
    TRAJECTORY_BUILDER_2D.min_range = 0.3
    TRAJECTORY_BUILDER_2D.max_range = 100.
    TRAJECTORY_BUILDER_2D.min_z = 0.2
    --TRAJECTORY_BUILDER_2D.max_z = 1.4
    --TRAJECTORY_BUILDER_2D.voxel_filter_size = 0.02
    
    --TRAJECTORY_BUILDER_2D.adaptive_voxel_filter.max_length = 0.5
    --TRAJECTORY_BUILDER_2D.adaptive_voxel_filter.min_num_points = 200.
    --TRAJECTORY_BUILDER_2D.adaptive_voxel_filter.max_range = 50.
    
    --TRAJECTORY_BUILDER_2D.loop_closure_adaptive_voxel_filter.max_length = 0.9
    --TRAJECTORY_BUILDER_2D.loop_closure_adaptive_voxel_filter.min_num_points = 100
    --TRAJECTORY_BUILDER_2D.loop_closure_adaptive_voxel_filter.max_range = 50.
    
    TRAJECTORY_BUILDER_2D.use_online_correlative_scan_matching = false
    TRAJECTORY_BUILDER_2D.ceres_scan_matcher.occupied_space_weight = 1.
    TRAJECTORY_BUILDER_2D.ceres_scan_matcher.translation_weight = 1.
    TRAJECTORY_BUILDER_2D.ceres_scan_matcher.rotation_weight = 1.
    --TRAJECTORY_BUILDER_2D.ceres_scan_matcher.ceres_solver_options.max_num_iterations = 12
    
    --TRAJECTORY_BUILDER_2D.motion_filter.max_distance_meters = 0.1
    --TRAJECTORY_BUILDER_2D.motion_filter.max_angle_radians = 0.004
    --TRAJECTORY_BUILDER_2D.imu_gravity_time_constant = 1.
    
    TRAJECTORY_BUILDER_2D.submaps.num_range_data = 80.
    TRAJECTORY_BUILDER_2D.submaps.grid_options_2d.resolution = 0.1
    
    POSE_GRAPH.optimize_every_n_nodes = 160.
    POSE_GRAPH.constraint_builder.sampling_ratio = 0.3
    POSE_GRAPH.constraint_builder.max_constraint_distance = 15.
    POSE_GRAPH.constraint_builder.min_score = 0.48
    POSE_GRAPH.constraint_builder.global_localization_min_score = 0.60
    
    return options
    
  • trajectory_builder_2d.lua

    TRAJECTORY_BUILDER_2D = {
      use_imu_data = true,            -- 是否使用imu数据
      min_range = 0.,                 -- 雷达数据的最远最近滤波, 保存中间值
      max_range = 30.,
      min_z = -0.8,                   -- 雷达数据的最高与最低的过滤, 保存中间值
      max_z = 2.,
      missing_data_ray_length = 5.,   -- 超过最大距离范围的数据点用这个距离代替
      num_accumulated_range_data = 1, -- 几帧有效的点云数据进行一次扫描匹配
      voxel_filter_size = 0.025,      -- 体素滤波的立方体的边长
    
      -- 使用固定的voxel滤波之后, 再使用自适应体素滤波器
      -- 体素滤波器 用于生成稀疏点云 以进行 扫描匹配
      adaptive_voxel_filter = {
        max_length = 0.5,             -- 尝试确定最佳的立方体边长, 边长最大为0.5
        min_num_points = 200,         -- 如果存在 较多点 并且大于'min_num_points', 则减小体素长度以尝试获得该最小点数
        max_range = 50.,              -- 距远离原点超过max_range 的点被移除
      },
    
      -- 闭环检测的自适应体素滤波器, 用于生成稀疏点云 以进行 闭环检测
      loop_closure_adaptive_voxel_filter = {
        max_length = 0.9,
        min_num_points = 100,
        max_range = 50.,
      },
    
      -- 是否使用 real_time_correlative_scan_matcher 为ceres提供先验信息
      -- 计算复杂度高 , 但是很鲁棒 , 在odom或者imu不准时依然能达到很好的效果
      use_online_correlative_scan_matching = false,
      real_time_correlative_scan_matcher = {
        linear_search_window = 0.1,             -- 线性搜索窗口的大小
        angular_search_window = math.rad(20.),  -- 角度搜索窗口的大小
        translation_delta_cost_weight = 1e-1,   -- 用于计算各部分score的权重
        rotation_delta_cost_weight = 1e-1,
      },
    
      -- ceres匹配的一些配置参数
      ceres_scan_matcher = {
        occupied_space_weight = 1.,
        translation_weight = 10.,
        rotation_weight = 40.,
        ceres_solver_options = {
          use_nonmonotonic_steps = false,
          max_num_iterations = 20,
          num_threads = 1,
        },
      },
    
      -- 为了防止子图里插入太多数据, 在插入子图之前之前对数据进行过滤
      motion_filter = {
        max_time_seconds = 5.,
        max_distance_meters = 0.2,
        max_angle_radians = math.rad(1.),
      },
    
      -- TODO(schwoere,wohe): Remove this constant. This is only kept for ROS.
      imu_gravity_time_constant = 10.,
    
      -- 位姿预测器
      pose_extrapolator = {
        use_imu_based = false,
        constant_velocity = {
          imu_gravity_time_constant = 10.,
          pose_queue_duration = 0.001,
        },
        imu_based = {
          pose_queue_duration = 5.,
          gravity_constant = 9.806,
          pose_translation_weight = 1.,
          pose_rotation_weight = 1.,
          imu_acceleration_weight = 1.,
          imu_rotation_weight = 1.,
          odometry_translation_weight = 1.,
          odometry_rotation_weight = 1.,
          solver_options = {
            use_nonmonotonic_steps = false;
            max_num_iterations = 10;
            num_threads = 1;
          },
        },
      },
    
      -- 子图相关的一些配置
      submaps = {
        num_range_data = 90,          -- 一个子图里插入雷达数据的个数的一半
        grid_options_2d = {
          grid_type = "PROBABILITY_GRID", -- 地图的种类, 还可以是tsdf格式
          resolution = 0.05,
        },
        range_data_inserter = {
          range_data_inserter_type = "PROBABILITY_GRID_INSERTER_2D",
          -- 概率占用栅格地图的一些配置
          probability_grid_range_data_inserter = {
            insert_free_space = true,
            hit_probability = 0.55,
            miss_probability = 0.49,
          },
          -- tsdf地图的一些配置
          tsdf_range_data_inserter = {
            truncation_distance = 0.3,
            maximum_weight = 10.,
            update_free_space = false,
            normal_estimation_options = {
              num_normal_samples = 4,
              sample_radius = 0.5,
            },
            project_sdf_distance_to_scan_normal = true,
            update_weight_range_exponent = 0,
            update_weight_angle_scan_normal_to_ray_kernel_bandwidth = 0.5,
            update_weight_distance_cell_to_hit_kernel_bandwidth = 0.5,
          },
        },
      },
    }
    
  • pose_graph.lua

    POSE_GRAPH = {
      -- 每隔多少个节点执行一次后端优化
      optimize_every_n_nodes = 90,
    
      -- 约束构建的相关参数
      constraint_builder = {
        sampling_ratio = 0.3,                 -- 对局部子图进行回环检测时的计算频率, 数值越大, 计算次数越多
        max_constraint_distance = 15.,        -- 对局部子图进行回环检测时能成为约束的最大距离
        min_score = 0.55,                     -- 对局部子图进行回环检测时的最低分数阈值
        global_localization_min_score = 0.6,  -- 对整体子图进行回环检测时的最低分数阈值
        loop_closure_translation_weight = 1.1e4,
        loop_closure_rotation_weight = 1e5,
        log_matches = true,                   -- 打印约束计算的log
        
        -- 基于分支定界算法的2d粗匹配器
        fast_correlative_scan_matcher = {
          linear_search_window = 7.,
          angular_search_window = math.rad(30.),
          branch_and_bound_depth = 7,
        },
    
        -- 基于ceres的2d精匹配器
        ceres_scan_matcher = {
          occupied_space_weight = 20.,
          translation_weight = 10.,
          rotation_weight = 1.,
          ceres_solver_options = {
            use_nonmonotonic_steps = true,
            max_num_iterations = 10,
            num_threads = 1,
          },
        },
    
        -- 基于分支定界算法的3d粗匹配器
        fast_correlative_scan_matcher_3d = {
          branch_and_bound_depth = 8,
          full_resolution_depth = 3,
          min_rotational_score = 0.77,
          min_low_resolution_score = 0.55,
          linear_xy_search_window = 5.,
          linear_z_search_window = 1.,
          angular_search_window = math.rad(15.),
        },
    
        -- 基于ceres的3d精匹配器
        ceres_scan_matcher_3d = {
          occupied_space_weight_0 = 5.,
          occupied_space_weight_1 = 30.,
          translation_weight = 10.,
          rotation_weight = 1.,
          only_optimize_yaw = false,
          ceres_solver_options = {
            use_nonmonotonic_steps = false,
            max_num_iterations = 10,
            num_threads = 1,
          },
        },
      },
    
      matcher_translation_weight = 5e2,
      matcher_rotation_weight = 1.6e3,
    
      -- 优化残差方程的相关参数
      optimization_problem = {
        huber_scale = 1e1,                -- 值越大,(潜在)异常值的影响就越大
        acceleration_weight = 1.1e2,      -- 3d里imu的线加速度的权重
        rotation_weight = 1.6e4,          -- 3d里imu的旋转的权重
        
        -- 前端结果残差的权重
        local_slam_pose_translation_weight = 1e5,
        local_slam_pose_rotation_weight = 1e5,
        -- 里程计残差的权重
        odometry_translation_weight = 1e5,
        odometry_rotation_weight = 1e5,
        -- gps残差的权重
        fixed_frame_pose_translation_weight = 1e1,
        fixed_frame_pose_rotation_weight = 1e2,
        fixed_frame_pose_use_tolerant_loss = false,
        fixed_frame_pose_tolerant_loss_param_a = 1,
        fixed_frame_pose_tolerant_loss_param_b = 1,
    
        log_solver_summary = false,
        use_online_imu_extrinsics_in_3d = true,
        fix_z_in_3d = false,
        ceres_solver_options = {
          use_nonmonotonic_steps = false,
          max_num_iterations = 50,
          num_threads = 7,
        },
      },
    
      max_num_final_iterations = 200,   -- 在建图结束之后执行一次全局优化, 不要求实时性, 迭代次数多
      global_sampling_ratio = 0.003,    -- 纯定位时候查找回环的频率
      log_residual_histograms = true,
      global_constraint_search_after_n_seconds = 10., -- 纯定位时多少秒执行一次全子图的约束计算
    
      --  overlapping_submaps_trimmer_2d = {
      --    fresh_submaps_count = 1,
      --    min_covered_area = 2,
      --    min_added_submaps_count = 5,
      --  },
    }
    

2.3 运行演示

$ source devel/setup.bash
$ roslaunch cartographer_ros lx_rs16_2d_outdoor.launch

移动机器人激光SLAM导航(五):Cartographer SLAM 篇,自主探索导航学习,SLAM,Cartographer,工程化调参

3. Cartographer 调参总结

3.1 降低延迟与减小计算量

  • 前端

    • 减小 max_range 即减小了需要处理的点数,在激光雷达远距离的数据点不准时一定要减小这个值
    • 增大 voxel_filter_size,相当于减小了需要处理的点数
    • 增大 submaps.resolution,相当于减小了匹配时的搜索量
    • 对于自适应体素滤波 减小 min_num_points 与 max_range,增大 max_length,相当于减小了需要处理的点数
  • 后端文章来源地址https://www.toymoban.com/news/detail-833926.html

    • 减小 optimize_every_n_nodes, 降低优化频率, 减小了计算量
    • 增大 MAP_BUILDER.num_background_threads, 增加计算速度
    • 减小 global_sampling_ratio, 减小计算全局约束的频率
    • 减小 constraint_builder.sampling_ratio, 减少了约束的数量
    • 增大 constraint_builder.min_score, 减少了约束的数量
    • 减小分枝定界搜索窗的大小, 包括linear_xy_search_window,inear_z_search_window, angular_search_window
    • 增大 global_constraint_search_after_n_seconds, 减小计算全局约束的频率
    • 减小 max_num_iterations, 减小迭代次数

3.2 降低内存

  • 增大子图的分辨率 submaps.resolution

3.3 常调的参数

TRAJECTORY_BUILDER_2D.min_range = 0.3
TRAJECTORY_BUILDER_2D.max_range = 100.
TRAJECTORY_BUILDER_2D.min_z = 0.2 -- / -0.8
TRAJECTORY_BUILDER_2D.voxel_filter_size = 0.02
TRAJECTORY_BUILDER_2D.ceres_scan_matcher.occupied_space_weight = 10.
TRAJECTORY_BUILDER_2D.ceres_scan_matcher.translation_weight = 1.
TRAJECTORY_BUILDER_2D.ceres_scan_matcher.rotation_weight = 1.
TRAJECTORY_BUILDER_2D.submaps.num_range_data = 80.
TRAJECTORY_BUILDER_2D.submaps.grid_options_2d.resolution = 0.1 -- / 0.02
POSE_GRAPH.optimize_every_n_nodes = 160. -- 2倍的num_range_data以上
POSE_GRAPH.constraint_builder.sampling_ratio = 0.3
POSE_GRAPH.constraint_builder.max_constraint_distance = 15.
POSE_GRAPH.constraint_builder.min_score = 0.48
POSE_GRAPH.constraint_builder.global_localization_min_score = 0.60

4. Cartographer 工程化建议

4.1 如何提升建图质量

  • 选择频率高(25 Hz 以上)、精度高的激光雷达
  • 如果只能用频率低的激光雷达
    • 使用高频、高精度 IMU,且让机器人运动慢一点
    • 调 ceres 的匹配权重,将地图权重调大,平移旋转权重调小
    • 将代码中平移和旋转的残差注释掉
  • 里程计
    • Cartographer 中对里程计的使用不太好
    • 可以将 karto 与 GMapping 中使用里程计进行预测的部分拿过来进行使用,改完后就可达到比较好的位姿预测效果
  • 粗匹配
    • 将 karto 的扫描匹配的粗匹配放过来,karto 的扫描匹配的计算量很小,当做粗匹配很不错
  • 地图
    • 在最终生成地图的时候使用后端优化后的节点重新生成一次地图,这样生成的地图效果会比前端地图的叠加要好很多

4.2 降低计算量与内存

  • 体素滤波与自适应体素滤波的计算量(不是很大)
  • 后端进行子图间约束时的计算量很大
  • 分支定界算法的计算量很大
  • 降低内存,内存的占用基本就是多分辨率地图,每个子图的多分辨率地图都进行保存是否有必要

4.3 纯定位的改进建议

  • 将纯定位模式与建图拆分开,改成读取之前轨迹的地图进行匹配.
  • 新的轨迹只进行位姿预测,拿到预测后的位姿与之前轨迹的地图进行匹配,新的轨迹不再进行地图的生成与保存,同时将整个后端的功能去掉.
  • 去掉后端优化会导致没有重定位功能,这时可将 cartographer 的回环检测(子图间约束的计算)部分单独拿出来,做成一个重定位功能,通过服务来调用这个重定位功能,根据当前点云确定机器人在之前地图的位姿

4.4 去 ros 的参考思路

  • 仿照 cartographer_ros 里的操作:获取到传感器数据,将数据转到 tracking_frame 坐标系下并进行格式转换,再传入到 cartographer 里就行

5. 源码注释

  • cartographer_detailed_comments_ws

到了这里,关于移动机器人激光SLAM导航(五):Cartographer SLAM 篇的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于机器人自主移动实现SLAM建图

    博客地址:https://www.cnblogs.com/zylyehuo/ 基于[移动机器人运动规划及运动仿真],详见之前的博客 移动机器人运动规划及运动仿真 - zylyehuo - 博客园 参考链接 Autolabor-ROS机器人入门课程《ROS理论与实践》 ubuntu 18.04

    2024年02月05日
    浏览(44)
  • 冰达ROS机器人使用-实现slam建模、自主导航、避障

    1.在windows中下载好远程连接工具: xshell 、 puty 1 2.机器人有两种模式: 模式 说明 AP模式 机器人自己创建一个热点,电脑端连接该热点,实现局域网互通 WiFi模式 机器人和电脑同时连接一个路由器,实现局域网通信 ps:本文使用AP模式,因为用起来比较方便 3.在机器人AP模式下

    2023年04月08日
    浏览(45)
  • 8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位

    目录 1. 为 NDT 设计一个匹配度评估指标,利用该指标可以判断 NDT 匹配的好坏。 2. 利用第 1 题的指标,修改程序,实现 mapping 部分的回环检测。 3. 将建图结果导出为 NDT map,即将 NDT 体素内的均值和协方差都存储成文件。 4. 实现基于 NDT map 的激光定位。根据车辆实时位姿,

    2024年02月02日
    浏览(41)
  • 基于Gazebo搭建移动机器人,并结合SLAM系统完成建图仿真

    博客地址:https://www.cnblogs.com/zylyehuo/ gazebo小车模型创建及仿真详见之前博客 gazebo小车模型(附带仿真环境) - zylyehuo - 博客园 gazebo+rviz 仿真 - zylyehuo - 博客园 参考链接 Autolabor-ROS机器人入门课程《ROS理论与实践》 安装 gmapping 包(用于构建地图): sudo apt install ros-melodic-gmapping 安

    2024年02月04日
    浏览(51)
  • 基于gazebo仿真环境的移动机器人导航仿真

    摘要 :实现移动机器人同时定位与建图技术和路径规划技术是让机器人真正智能化的前提。针对机器人自主导航问题,本文在gazebo仿真环境下,利用开源软件包Gmapping提供的算法完成了机器人的自定位与手动地图构建,在此基础上结合move_base软件包相关的路径规划算法完成了

    2024年02月01日
    浏览(39)
  • ROS2下使用TurtleBot3-->SLAM导航(仿真)RVIZ加载不出机器人模型

    在使用台式机进行仿真时,大部分例程很顺利,但在SLAM导航时,在RVIZ中却一直加载不出机器人模型,点击Navigation2 Goal选择目标点进行导航时,无响应。 启动后在RVIZ2和终端看到一个错误 按照官网的指令试了多次,一直无法加载,在网上赵的解决方案都是修改RVIZ里的各种设

    2024年02月09日
    浏览(53)
  • 基于Gazebo搭建移动机器人,并结合SLAM系统完成定位和建图仿真

    博客地址:https://www.cnblogs.com/zylyehuo/ gazebo小车模型创建及仿真详见之前博客 gazebo小车模型(附带仿真环境) - zylyehuo - 博客园 gazebo+rviz 仿真 - zylyehuo - 博客园 参考链接 Autolabor-ROS机器人入门课程《ROS理论与实践》 安装 gmapping 包(用于构建地图): sudo apt install ros-melodic-gmapping 安

    2024年02月04日
    浏览(46)
  • ROS学习笔记08、机器人导航仿真(slam、map_server、amcl、move_base与导航消息介绍)

    马上开学,目前学校很多实验室都是人工智能这块,大部分都是和机器人相关,然后软件这块就是和cv、ros相关,就打算开始学习一下。 本章节是虚拟机安装Ubuntu18.04以及安装ROS的环境。 学习教程:【Autolabor初级教程】ROS机器人入门,博客中一些知识点是来源于赵老师的笔记

    2023年04月12日
    浏览(45)
  • 【科普】干货!带你从0了解移动机器人(三) ——自主导航系统及上位机软件设计与实现

    随着机器人技术的不断发展,我们可以在许多简单重复,危险的岗位上看到机器人的身影,移动机器人凭借其在复杂环境下工作,具有自行感知、自行规划、自我决策功能的能力,它可以在不同的环境中移动并执行任务,在人类社会中发挥着越来越重要的作用。但移动机器人

    2024年02月07日
    浏览(69)
  • Gazebo-Ros搭建小车和场景并运行slam算法进行建图4--为机器人添加运动控制器控制其移动

    1.要想机器人小车在gazebo中运动还需要为其添加运动插件 在文章3中的my_robot2.urdf 最下边(前边)添加如下部分: ​ 这里使用的二轮差速控制,选择对应的插件libgazebo_ros_diff_drive.so 添加上述部分,文章3中的my_robot2.urdf 更新为 --完整代码如下: 2.使用turtlebot3中的控制机器人的

    2023年04月11日
    浏览(96)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包