如何实现基于图像与激光雷达的 3d 场景重建?

这篇具有很好参考价值的文章主要介绍了如何实现基于图像与激光雷达的 3d 场景重建?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

智影S100是一款基于图像和激光点云融合建模技术的高精度轻巧手持SLAM三维激光扫描仪。设备机身小巧、手持轻便,可快速采集点云数据;支持实时解算、实时预览点云成果,大幅提高内外业工作效率;同时支持一键生成实景三维Mesh模型,实现城市建筑、堆体、室内空间等场景的高逼真3d重建。

以下是智影S100在国家游泳中心“水立方”进行实地采集的点云与模型成果展示:

智影S100:水立方立面点云与模型成果分享,实时解算生成高质量点云结果,可进一步生成实景三维Mesh模型,助力场馆更新、美化改造。文章来源地址https://www.toymoban.com/news/detail-834073.html

到了这里,关于如何实现基于图像与激光雷达的 3d 场景重建?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用Open3D实现3D激光雷达可视化:以自动驾驶的2DKITTI深度框架为例(下篇)

    原创 | 文 BFT机器人  【原文链接】使用Open3D实现3D激光雷达可视化:以自动驾驶的2DKITTI深度框架为例(上篇) 05 Open3D可视化工具 多功能且高效的3D数据处理:Open3D是一个全面的开源库,为3D数据处理提供强大的解决方案。它具有优化的后端架构,可实现高效的并行化,非常适

    2024年02月04日
    浏览(61)
  • 使用Open3D实现3D激光雷达可视化:以自动驾驶的2DKITTI深度框架为例(上篇)

    原创 | 文 BFT机器人  3DLiDAR传感器(或)三维光探测和测距是一种先进的发光仪器,能够像我们人类一样在三维空间中感知现实世界。这项技术特别彻底改变了地球观测、环境监测、侦察和现在的自动驾驶领域,它提供准确和详细数据的能力有助于促进我们对环境和自然资源

    2024年02月03日
    浏览(56)
  • 4D毫米波雷达和3D雷达、激光雷达全面对比

              众所周知,传统3D毫米波雷达存在如下性能缺陷:         1)静止目标和地物杂波混在一起,难以区分;         2) 横穿车辆和行人多普勒为零或很低,难以检测;         3) 高处物体和地面目标不能区分,容易造成误刹,影响安全性;        

    2024年02月05日
    浏览(58)
  • 3D激光雷达和相机融合

    主要看重投影误差,cv的标定识别率也太低了。。。原因是找到了,相机给的曝光时间5ms,增大曝光时间成功率大大提升,但曝光时间给打了,影响实时性,头疼。。 主要是3D-2D的标定 采集标定数据 参照以下采集标定数据和处理标定数据,pcd角点选取和图像角点选取: https:

    2024年02月06日
    浏览(63)
  • 视觉与激光雷达融合3D检测(一)AVOD

    AVOD(Aggregate View Object Detection)和MV3D类似,是一种融合3维点云和相机RGB图像的三维目标检测算法. 不同的是: MV3D中融合了相机RGB图像,点云BEV映射和FrontView映射,而AVOD则只融合相机RGB图像和点云BEV映射.         从网络结果来看,AVOD采用了基于两阶的检测网络,这让我们很容易想到

    2024年02月07日
    浏览(104)
  • 【3D激光SLAM】Livox-mid-360激光雷达ip配置

    写在前言:请认真阅读mid360官方手册,第一次配雷达ip真的很多坑 参考资料 mid360雷达sdk:https://github.com/Livox-SDK Livox Viewer2:https://www.livoxtech.com/downloads LIO-Livox:https://github.com/Livox-SDK/LIO-Livox Livox-Mapping:https://github.com/Livox-SDK/livox_mapping 首先在Ubuntu20.04下将本机IP地址置于和雷达

    2023年04月23日
    浏览(59)
  • 单张图像3D重建:原理与PyTorch实现

    近年来,深度学习(DL)在解决图像分类、目标检测、语义分割等 2D 图像任务方面表现出了出色的能力。DL 也不例外,在将其应用于 3D 图形问题方面也取得了巨大进展。 在这篇文章中,我们将探讨最近将深度学习扩展到单图像 3D 重建任务的尝试,这是 3D 计算机图形领域最重

    2024年02月04日
    浏览(39)
  • 使用激光雷达(LiDAR)和相机进行3D物体跟踪

    使用相机和激光雷达进行时间到碰撞(TTC)计算 在我的先前文章中,我介绍了通过检测关键点和匹配描述符进行2D特征跟踪的主题。在本文中,我将利用这些文章中的概念,以及更多的内容,开发一个软件流水线,使用相机和激光雷达测量在3D空间中检测和跟踪对象,并使用

    2024年02月05日
    浏览(49)
  • 传感器融合 | 适用于自动驾驶场景的激光雷达传感器融合项目_将激光雷达的高分辨率成像+测量物体速度的能力相结合

    项目应用场景 面向自动驾驶场景的激光雷达传感器融合,将激光雷达的高分辨率成像+测量物体速度的能力相结合,项目是一个从多个传感器获取数据并将其组合起来的过程,可以更加好地进行环境感知。项目支持 ubuntu、mac 和 windows 平台。 项目效果 项目细节 == 具体参见项目

    2024年04月24日
    浏览(51)
  • 超声波、毫米波、ToF激光雷达——在低功耗场景的应用选型

    目前主要的测距方式有:光学测距,超声波和微波雷达测距。 光学测距又可以分为:双目,结构光, ToF 。微波雷达,在消费类产品中,常见的是波长在毫米级别的毫米波雷达。超声波应用比较多的是在车载倒车雷达上。 它们各有优缺点,本章内容只针对在户外低功耗场景的

    2024年02月02日
    浏览(100)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包