这几道题目是有共性的,我们只需要抽出来力扣第 188 题「188. 买卖股票的最佳时机 IV - 力扣(LeetCode)」进行研究,因为这道题是最泛化的形式,其他的问题都是这个形式的简化,看下题目:
第一题是只进行一次交易,相当于 k = 1
;第二题是不限交易次数,相当于 k = +infinity
(正无穷);第三题是只进行 2 次交易,相当于 k = 2
;剩下两道也是不限次数,但是加了交易「冷冻期」和「手续费」的额外条件,其实就是第二题的变种,都很容易处理。
下面言归正传,开始解题。
穷举框架
首先,还是一样的思路:如何穷举?
动态规划算法本质上就是穷举「状态」,然后在「选择」中选择最优解。
那么对于这道题,我们具体到每一天,看看总共有几种可能的「状态」,再找出每个「状态」对应的「选择」。我们要穷举所有「状态」,穷举的目的是根据对应的「选择」更新状态。听起来抽象,你只要记住「状态」和「选择」两个词就行,下面实操一下就很容易明白了。
for 状态1 in 状态1的所有取值:
for 状态2 in 状态2的所有取值:
for ...
dp[状态1][状态2][...] = 择优(选择1,选择2...)
比如说这个问题,每天都有三种「选择」:买入、卖出、无操作,我们用 buy
, sell
, rest
表示这三种选择。
但问题是,并不是每天都可以任意选择这三种选择的,因为 sell
必须在 buy
之后,buy
必须在 sell
之后。那么 rest
操作还应该分两种状态,一种是 buy
之后的 rest
(持有了股票),一种是 sell
之后的 rest
(没有持有股票)。而且别忘了,我们还有交易次数 k
的限制,就是说你 buy
还只能在 k > 0
的前提下操作。
注:
注意我在本文会频繁使用「交易」这个词,我们把一次买入和一次卖出定义为一次「交易」。
这个问题的「状态」有三个,第一个是天数,第二个是允许交易的最大次数,第三个是当前的持有状态(即之前说的 rest
的状态,我们不妨用 1 表示持有,0 表示没有持有)。然后我们用一个三维数组就可以装下这几种状态的全部组合:
dp[i][k][0 or 1]
0 <= i <= n - 1, 1 <= k <= K
n 为天数,大 K 为交易数的上限,0 和 1 代表是否持有股票。
此问题共 n × K × 2 种状态,全部穷举就能搞定。
for 0 <= i < n:
for 1 <= k <= K:
for s in {0, 1}:
dp[i][k][s] = max(buy, sell, rest)
而且我们可以用自然语言描述出每一个状态的含义,比如说 dp[3][2][1]
的含义就是:今天是第三天,我现在手上持有着股票,至今最多进行 2 次交易。再比如 dp[2][3][0]
的含义:今天是第二天,我现在手上没有持有股票,至今最多进行 3 次交易。很容易理解,对吧?
我们想求的最终答案是 dp[n - 1][K][0]
,即最后一天,最多允许 K
次交易,最多获得多少利润。
你可能问为什么不是 dp[n - 1][K][1]
?因为 dp[n - 1][K][1]
代表到最后一天手上还持有股票,dp[n - 1][K][0]
表示最后一天手上的股票已经卖出去了,很显然后者得到的利润一定大于前者。
记住如何解释「状态」,一旦你觉得哪里不好理解,把它翻译成自然语言就容易理解了。
状态转移框架
现在,我们完成了「状态」的穷举,我们开始思考每种「状态」有哪些「选择」,应该如何更新「状态」。
只看「持有状态」,可以画个状态转移图:
通过这个图可以很清楚地看到,每种状态(0 和 1)是如何转移而来的。根据这个图,我们来写一下状态转移方程:
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
max( 今天选择 rest, 今天选择 sell )
解释:今天我没有持有股票,有两种可能,我从这两种可能中求最大利润:
1、我昨天就没有持有,且截至昨天最大交易次数限制为 k
;然后我今天选择 rest
,所以我今天还是没有持有,最大交易次数限制依然为 k
。
2、我昨天持有股票,且截至昨天最大交易次数限制为 k
;但是今天我 sell
了,所以我今天没有持有股票了,最大交易次数限制依然为 k
。
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
max( 今天选择 rest, 今天选择 buy )
解释:今天我持有着股票,最大交易次数限制为 k
,那么对于昨天来说,有两种可能,我从这两种可能中求最大利润:
1、我昨天就持有着股票,且截至昨天最大交易次数限制为 k
;然后今天选择 rest
,所以我今天还持有着股票,最大交易次数限制依然为 k
。
2、我昨天本没有持有,且截至昨天最大交易次数限制为 k - 1
;但今天我选择 buy
,所以今天我就持有股票了,最大交易次数限制为 k
。
注
这里着重提醒一下,时刻牢记「状态」的定义,状态
k
的定义并不是「已进行的交易次数」,而是「最大交易次数的上限限制」。如果确定今天进行一次交易,且要保证截至今天最大交易次数上限为k
,那么昨天的最大交易次数上限必须是k - 1
。举个具体的例子,比方说要求你的银行卡里今天至少有 100 块钱,且你确定你今天可以赚 10 块钱,那么你就要保证昨天的银行卡要至少剩下 90 块钱。
这个解释应该很清楚了,如果 buy
,就要从利润中减去 prices[i]
,如果 sell
,就要给利润增加 prices[i]
。今天的最大利润就是这两种可能选择中较大的那个。
注意 k
的限制,在选择 buy
的时候相当于开启了一次交易,那么对于昨天来说,交易次数的上限 k
应该减小 1。
现在,我们已经完成了动态规划中最困难的一步:状态转移方程。如果之前的内容你都可以理解,那么你已经可以秒杀所有问题了,只要套这个框架就行了。不过还差最后一点点,就是定义 base case,即最简单的情况。
dp[-1][...][0] = 0
解释:因为 i 是从 0 开始的,所以 i = -1 意味着还没有开始,这时候的利润当然是 0。
dp[-1][...][1] = -infinity
解释:还没开始的时候,是不可能持有股票的。
因为我们的算法要求一个最大值,所以初始值设为一个最小值,方便取最大值。
dp[...][0][0] = 0
解释:因为 k 是从 1 开始的,所以 k = 0 意味着根本不允许交易,这时候利润当然是 0。
dp[...][0][1] = -infinity
解释:不允许交易的情况下,是不可能持有股票的。
因为我们的算法要求一个最大值,所以初始值设为一个最小值,方便取最大值。
把上面的状态转移方程总结一下:
base case:
dp[-1][...][0] = dp[...][0][0] = 0
dp[-1][...][1] = dp[...][0][1] = -infinity
状态转移方程:
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
秒杀题目
121. 买卖股票的最佳时机
第一题,先说力扣第 121 题「121. 买卖股票的最佳时机 - 力扣(LeetCode)」,相当于 k = 1
的情况:
直接套状态转移方程,根据 base case,可以做一些化简:
dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i])
dp[i][1][1] = max(dp[i-1][1][1], dp[i-1][0][0] - prices[i])
= max(dp[i-1][1][1], -prices[i])
解释:k = 0 的 base case,所以 dp[i-1][0][0] = 0。
现在发现 k 都是 1,不会改变,即 k 对状态转移已经没有影响了。
可以进行进一步化简去掉所有 k:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], -prices[i])
int n = prices.length;
int[][] dp = new int[n][2];
for (int i = 0; i < n; i++) {
dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
dp[i][1] = Math.max(dp[i-1][1], -prices[i]);
}
return dp[n - 1][0];
显然 i = 0
时 i - 1
是不合法的索引,这是因为我们没有对 i
的 base case 进行处理,可以这样给一个特化处理:
if (i - 1 == -1) {
dp[i][0] = 0;
// 根据状态转移方程可得:
// dp[i][0]
// = max(dp[-1][0], dp[-1][1] + prices[i])
// = max(0, -infinity + prices[i]) = 0
dp[i][1] = -prices[i];
// 根据状态转移方程可得:
// dp[i][1]
// = max(dp[-1][1], dp[-1][0] - prices[i])
// = max(-infinity, 0 - prices[i])
// = -prices[i]
continue;
}
第一题就解决了,但是这样处理 base case 很麻烦,而且注意一下状态转移方程,新状态只和相邻的一个状态有关,不需要用整个 dp
数组,只需要一个变量储存相邻的那个状态就足够了,这样可以把空间复杂度降到 O(1):
// 原始版本
int maxProfit_k_1(int[] prices) {
int n = prices.length;
int[][] dp = new int[n][2];
for (int i = 0; i < n; i++) {
if (i - 1 == -1) {
// base case
dp[i][0] = 0;
dp[i][1] = -prices[i];
continue;
}
dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
dp[i][1] = Math.max(dp[i-1][1], -prices[i]);
}
return dp[n - 1][0];
}
// 空间复杂度优化版本
int maxProfit_k_1(int[] prices) {
int n = prices.length;
// base case: dp[-1][0] = 0, dp[-1][1] = -infinity
int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
// dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
// dp[i][1] = max(dp[i-1][1], -prices[i])
dp_i_1 = Math.max(dp_i_1, -prices[i]);
}
return dp_i_0;
}
122. 买卖股票的最佳时机 II
第二题,看一下力扣第 122 题「122. 买卖股票的最佳时机 II - 力扣(LeetCode)」,也就是 k
为正无穷的情况:
题目还专门强调可以在同一天出售,但我觉得这个条件纯属多余,如果当天买当天卖,那利润当然就是 0,这不是和没有进行交易是一样的吗?这道题的特点在于没有给出交易总数 k
的限制,也就相当于 k
为正无穷。
如果 k
为正无穷,那么就可以认为 k
和 k - 1
是一样的。可以这样改写框架:
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
= max(dp[i-1][k][1], dp[i-1][k][0] - prices[i])
我们发现数组中的 k 已经不会改变了,也就是说不需要记录 k 这个状态了:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])
// 原始版本
int maxProfit_k_inf(int[] prices) {
int n = prices.length;
int[][] dp = new int[n][2];
for (int i = 0; i < n; i++) {
if (i - 1 == -1) {
// base case
dp[i][0] = 0;
dp[i][1] = -prices[i];
continue;
}
dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] - prices[i]);
}
return dp[n - 1][0];
}
// 空间复杂度优化版本
int maxProfit_k_inf(int[] prices) {
int n = prices.length;
int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
int temp = dp_i_0;
dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
dp_i_1 = Math.max(dp_i_1, temp - prices[i]);
}
return dp_i_0;
}
123. 买卖股票的最佳时机 III
第三题,看力扣第 123 题「123. 买卖股票的最佳时机 III - 力扣(LeetCode)」,也就是 k = 2
的情况:k = 2
和前面题目的情况稍微不同,因为上面的情况都和 k
的关系不太大:要么 k
是正无穷,状态转移和 k
没关系了;要么 k = 1
,跟 k = 0
这个 base case 挨得近,最后也没有存在感。
这道题 k = 2
和后面要讲的 k
是任意正整数的情况中,对 k
的处理就凸显出来了,我们直接写代码,边写边分析原因。
原始的状态转移方程,没有可化简的地方
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
按照之前的代码,我们可能想当然这样写代码(错误的):
int k = 2;
int[][][] dp = new int[n][k + 1][2];
for (int i = 0; i < n; i++) {
if (i - 1 == -1) {
// 处理 base case
dp[i][k][0] = 0;
dp[i][k][1] = -prices[i];
continue;
}
dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);
}
return dp[n - 1][k][0];
为什么错误?我这不是照着状态转移方程写的吗?
还记得前面总结的「穷举框架」吗?就是说我们必须穷举所有状态。其实我们之前的解法,都在穷举所有状态,只是之前的题目中 k
都被化简掉了。
比如说第一题,k = 1
时的代码框架:
int n = prices.length;
int[][] dp = new int[n][2];
for (int i = 0; i < n; i++) {
dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
dp[i][1] = Math.max(dp[i-1][1], -prices[i]);
}
return dp[n - 1][0];
但当 k = 2
时,由于没有消掉 k
的影响,所以必须要对 k
进行穷举:
// 原始版本
int maxProfit_k_2(int[] prices) {
int max_k = 2, n = prices.length;
int[][][] dp = new int[n][max_k + 1][2];
for (int i = 0; i < n; i++) {
for (int k = max_k; k >= 1; k--) {
if (i - 1 == -1) {
// 处理 base case
dp[i][k][0] = 0;
dp[i][k][1] = -prices[i];
continue;
}
dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);
}
}
// 穷举了 n × max_k × 2 个状态,正确。
return dp[n - 1][max_k][0];
}
注
这里肯定会有读者疑惑,
k
的 base case 是 0,按理说应该从k = 1, k++
这样穷举状态k
才对?而且如果你真的这样从小到大遍历k
,提交发现也是可以的。
为什么我从大到小遍历 k
也可以正确提交呢?因为你注意看,dp[i][k][..]
不会依赖 dp[i][k - 1][..]
,而是依赖 dp[i - 1][k - 1][..]
,而 dp[i - 1][..][..]
,都是已经计算出来的,所以不管你是 k = max_k, k--
,还是 k = 1, k++
,都是可以得出正确答案的。
那为什么我使用 k = max_k, k--
的方式呢?因为这样符合语义:
你买股票,初始的「状态」是什么?应该是从第 0 天开始,而且还没有进行过买卖,所以最大交易次数限制 k
应该是 max_k
;而随着「状态」的推移,你会进行交易,那么交易次数上限 k
应该不断减少,这样一想,k = max_k, k--
的方式是比较合乎实际场景的。文章来源:https://www.toymoban.com/news/detail-834230.html
当然,这里 k
取值范围比较小,所以也可以不用 for 循环,直接把 k = 1 和 2 的情况全部列举出来也可以:文章来源地址https://www.toymoban.com/news/detail-834230.html
// 状态转移方程:
// dp[i][2][0] = max(dp[i-1][2][0], dp[i-1][2][1] + prices[i])
// dp[i][2][1] = max(dp[i-1][2][1], dp[i-1][1][0] - prices[i])
// dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i])
// dp[i][1][1] = max(dp[i-1][1][1], -prices[i])
// 空间复杂度优化版本
int maxProfit_k_2(int[] prices) {
// base case
int dp_i10 = 0, dp_i11 = Integer.MIN_VALUE;
int dp_i20 = 0, dp_i21 = Integer.MIN_VALUE;
for (int price : prices) {
dp_i20 = Math.max(dp_i20, dp_i21 + price);
dp_i21 = Math.max(dp_i21, dp_i10 - price);
dp_i10 = Math.max(dp_i10, dp_i11 + price);
dp_i11 = Math.max(dp_i11, -price);
}
return dp_i20;
}
到了这里,关于团灭 LeetCode 股票买卖问题的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!