【ARM架构】ARMv8-A 系统中的安全架构概述

这篇具有很好参考价值的文章主要介绍了【ARM架构】ARMv8-A 系统中的安全架构概述。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一个安全或可信的操作系统保护着系统中敏感的信息,例如,可以保护用户存储的密码,信用卡等认证信息免受攻击。

安全由以下原则定义:

  • 保密性:保护设备上的敏感信息,防止未经授权的访问。有以下几种方法可以做到,比如密码和加密密钥。

  • 完整性:使用公钥来保护敏感信息防止被修改。

  • 可用性:确保对敏感信息的访问一定是经过授权的,利用固件更新来检测未经授权的访问。

举一个生活中的例子,可信系统存储了移动支付的密码,数字证书等

在开放的系统中,很难实现绝对安全,因为用户可能会下载各种各样的软件到移动设备上,同时也会下载一些恶意代码,这可能会篡改你的系统。

软件和硬件攻击可分为以下几类:

  • 软件攻击:恶意软件攻击通常不需要访问实际的设备,可以利用操作系统或应用程序的漏洞实现远程攻击。

  • 简单的硬件攻击:硬件攻击大部分是非破坏性的攻击,需要拿到实际的物理设备,并使用常见的工具,例如jtag和逻辑探针。

  • 专业的硬件攻击:这种攻击需要复杂而昂贵的工具,如聚焦离子束(FIB)技术或功率分析技术,而且更常用于对付智能卡设备。

TrustZone技术就是专门用来对抗软件攻击的。TrustZone也可以抵御一些简单的硬件攻击。

【ARM架构】ARMv8-A 系统中的安全架构概述,# 安全架构,# ARM架构,arm开发,架构,安全架构

TrustZone的硬件架构

TrustZone架构为系统设计者提供了一种帮助保护系统的方法。

即使是低级别的程序员也应该理解TrustZone的架构设计。

ARM 安全扩展模型允许系统开发人员对硬件设备和软件资源进行分区,以便他们既可以存在于安全子系统的Secure world,也可以存在于其他子系统的Normal world。

ARM 手册中使用 Secure World 和 Non-secure World来指示系统的安全状态。

Non-secure World并不意味着有安全漏洞,而是指正常运行的系统,即Normal world。

通常情况下,Secure World 和 Non-secure World存在着主从关系。

Secure World 的代码只有操作系统通过SMC(Secure Monitor Call )指令调用才可以执行。

SMC是不会主动发生的。

Non-secure World 的内存和功能也可以被Secure World 访问

但是不是绝对的,这部分实际上在有些业务中是做了完全的隔离的,具体还是要看业务的实现。

Secure monitor 管理着Secure World 和Non-secure World的切换,类似于操作系统中的上下文环境。

确保离开Secure World 时 当前环境被完整保存下来,当处理器再次切换到Secure World 时可以被正确 恢复。

和上下文切换异曲同工之妙

TrustZone是对ARM架构的补充扩展,这意味着一个处理器可以同时运行Secure World 和Non-secure World的代码。

如果Secure World 配置了中断外设可用,那么Secure World 和Non-secure World 的代码可以相互调用。

Secure monitor提供了Secure World 和Non-secure World的接口。出于程序的健壮性考虑, Secure monitor的代码应该在禁用中断的上下文执行。

编写一个可重入的 Secure monitor会很复杂,而且并不会带来太多的好处。

另外,Secure World 和Non-secure World 程序的执行也可以像操作系统那样执行多任务并行。

虽然Secure World 的程序执行时可访问的资源是完全独立于Non-secure World 的,但是两个世界也可以互相让步,以实现多任务并行的效果。

时分复用的效果

像固件或任何其他系统软件一样,Secure World 的软件必须尽量减少对系统其他部分的影响。

例如,Secure World的 代码执行时应避免消耗大量的时间。

Non-secure World 中的中断应尽可能快的传递给Normal World,这有助于确保Normal World软件良好的响应性。

内存系统由一个额外的位来划分,这个位叫做NS位。它表示访问的内存是Secure World 还是Non-secure World 。

这个位被添加到所有内存系统事务中,包括高速缓存标签和对系统内存和外设的访问。NS位可以为Secure World和Non-secure World 提供不同的物理地址空间。

这部分是访问实现在硬件上需要总线、CPU访问请求标识位、内存控制器标识位一一匹配。

在Normal World 中运行的软件只能对内存进行Non-secure 的访问。因为在由Normal World产生 的内存事务中,总是把NS位设置为1,而不考虑Normal World 中翻译表中的设置。

在Secure World 中运行的软件只进行Secure 的内存访问,但也可以使用翻译表中的NS和NSTable标志对特定的内存进行Non-secure 的访问。

如果对标记为安全的缓存数据进行非安全访问会导致缓存缺失。

如果对标记为安全的外部存储器进行非安全访问,通常会向内核返回一个错误响应。

EL3有自己的翻译表,由TTBR0_EL3(Translation Table Base Register )和TCR_EL3(Translation Control Register ) 管理。

在安全状态下,只允许stage 1的翻译,没有TTBR1_EL3寄存器。

EL1翻译表寄存器在安全状态之间不会被存储,因此TTBR0_EL1、TTBR1_EL1和TCR_EL1的值必须作为Secure monitor上下文切换操作的一部分为每个世界保存和恢复。

这就使得每个世界都有一套本地的转换表。 Secure World的映射会被隐藏起来,并受到Normal World 的保护。

Secure World 翻译表中包括NS和NSTable位,这决定了是否可以对Secure World 和 Non-secure World的物理地址空间。

Secure 和 Non-secure 的entries 可以在缓存和TLB中共存。在不同的世界之间切换时,缓存不会失效。

Normal World只能进行 Non-secure的访问,所以只能命中标记为 Non-secure 的缓存。而Secure World可以产生Secure 和 Non-secure的访问,如果安全状态在访问时发生变化,可能还会有缓存管理。

TLB中的entries 记录了是由那个世界产生的entries 。尽管Non-secure状态永远不能对Secure 的数据进行操作,但Secure World 可以将NS行分配到缓冲区。

另外,缓存的启用和禁用在每个异常级别都是不同的。

缓存控制对于两个世界来说都是独立的,但对所有的异常级别来说并不是独立的。

所以,EL0不能直接启用或禁用缓存,而EL2可以覆盖Non-secure EL1的行为。

Secure World和Non-secure World 的交互

如果你在包含安全服务的系统中编写代码,了解Secure World和Non-secure World 的交互方式对你很有用。

一个典型的操作系统都会包含一个轻量的内核或者可信执行环境(TEE)。

例如,在Secure World运行加密服务。它可以与Normal World 中的操作系统进行交互,Normal World 可以通过SMC调用访问Secure World。

通过这种方式,Normal World 既可以访问Secure World,又不会担心暴露加密的密钥。

一般来讲,开发人员不会与安全扩展组件,TEE,或者可信服务直接交互,而是通过Normal world 提供的API(例如authenticate())访问Secure World。

下图以应用程序调用API的形式展示了Normal world 和Secure World 的交互。API通过系统调用到TrustZone Driver,然后经过 Secure monitor传递给TEE。

【ARM架构】ARMv8-A 系统中的安全架构概述,# 安全架构,# ARM架构,arm开发,架构,安全架构

这种调用方式会在Secure World和Normal World间频繁传递数据。

例如,在 Secure world 中有一个签名检查器。Normal world可以请求Secure World使用SMC调用来验证下载更新的签名。

如果Secure World需要访问Normal world所使用的内存,Secure World可以使用其翻译表描述符中的NS位,以确保它使用Non-secure方式访问来读取数据。

这一点很重要,因为与请求数据相关的内容可能已经在缓存中了,因为Secure World执行的访问都会标记为Non-secure的地址。安全属性可以被认为是一个额外的地址位

如果内核使用安全内存访问来尝试读取数据,它就不会命中已经在缓存中的Non-secure数据。

如果你是一个平时只会和Normal world打交道的程序员,你可以忽略Secure World中发生的事情,因为它的操作对你来说是隐藏的。

一个副作用是,中断延迟可能会略有增加。Secure World可以是完全阻塞的,所以如果一个中断发生Secure World中时,这可能会阻塞Normal world的中断。

但与一般操作系统的整体延迟相比,可以忽略不计。这种问题给Normal world带来的影响取决于Secure World操作系统的架构设计。

Secure 和Normal worlds 的切换

在ARMv7的安全扩展中,软件使用Monitor mode在Secure 和Non-secure state切换。该模式和Secure state 中其他特权模式是一样的。

在ARMv8-A处理器中,AArch32相当于ARMv7-A。

对于ARMv8架构,当EL3使用AArch32时,ARMv8架构相当于ARMv7,以确保完全兼容,安全状态下的所有特权模式被视为处于EL3。

AArch32的安全模型如下图所示。在这种情况下,EL3是AArch32,以提供一个安全的操作系统和监视器。

【ARM架构】ARMv8-A 系统中的安全架构概述,# 安全架构,# ARM架构,arm开发,架构,安全架构

下图显示了当EL3执行AArch64以提供安全监视器时的安全模型。EL1用于安全操作系统。当EL3使用AArch64时,EL3被用来执行负责在Non-secure state和Secure state之间切换的代码。

【ARM架构】ARMv8-A 系统中的安全架构概述,# 安全架构,# ARM架构,arm开发,架构,安全架构

为了与AArch32保持一致,Secure state的EL1和EL0具有和Non-secure state的EL1和EL0不同的虚拟地址空间。
这使得AArch32 32位架构的运行在Secure state的代码可以在Non-secure state运行的64位操作系统中使用。

当Normal World 执行停止而Secure World的执行开始时,通过执行 Secure Monitor(SMC)指令或通过硬件异常机制(如中断或异步中止)在它们之间进行上下文切换。

ARM处理器有两种中断类型:FIQ和IRQ。

【ARM架构】ARMv8-A 系统中的安全架构概述,# 安全架构,# ARM架构,arm开发,架构,安全架构

在Secure World中也是支持中断的,其原理是将Secure World产生的中断重定向到EL3,并且 和当前的DAIF 字段无关。

然而,这些控制只区分了主要的中断类型。IRQ, FIQ, and asynchronous aborts。更详细的控制需要将中断分为 Secure 和Non-secure组。

如果要做到这一点,需要GIC的支持,在GIC中有一些特性来支持划分为不同的组。

一个典型的例子是FIQ被用作Secure interrupts,通过在中断控制器内将安全中断源映射为FIQ。同时,相关的外设和中断控制器寄存器必须被标记为只能被安全访问,以防止Normal World重新配置这些中断。

【ARM架构】ARMv8-A 系统中的安全架构概述,# 安全架构,# ARM架构,arm开发,架构,安全架构

使用安全扩展的实现通常有一个轻量级的可信内核,在Secure World中托管安全服务(例如加密)。

一个完整的操作系统在Normal World中运行,并能够使用SMC指令访问安全服务。

通过这种方式,Normal World可以访问服务功能,在普通世界中执行的任意代码不会有敏感数据暴露的风险。

集群中的安全问题

集群系统中的每个内核都具有相同的安全特性。

集群中任何数量的核心都可以在任何时间点上在Secure World中执行,并且核心能够在世界之间独立过渡。

寄存器控制Normal World代码是否可以修改Snoop控制单元(SCU)的设置。同样,在整个集群中分配优先级中断的GIC必须被配置为安全状态。

调试安全性

安全系统还控制调试规定的可用性。你可以为 Normal worlds 和Secure worlds配置独立的硬件调试,如JTAG调试和跟踪控制,这样就不会有关于受信任系统的信息泄露了。

你可以通过一个安全外设来控制硬件配置选项,或者你可以硬件连接它们,并使用以下信号来控制它们。

  • Secure Privileged Invasive Debug Enable (SPIDEN): JTAG debug.
  • Secure Privileged Non-Invasive Debug Enable (SPNIDEN): Trace and Performance Monitor.

总结

  • TrustZone 是ARM 架构的一个安全扩展模型,可以用在任何ARM处理器中。

  • Normal world 通过SMC指令访问Secure world。Secure monitor 管理着Normal World和Secure World 的切换。Secure monitor 的代码在禁用中断的上下文执行。

  • 内存系统事务中的NS位表示访问的是Secure World 的内存还是Normal World的内存。Normal World只能对内存进行非安全访问,Secure World 既可以进行安全访问,也可以进行非安全访问,只需要更改NS位即可。

  • Secure World的翻译表和Non-Secure World的翻译表是独立的,Secure World的翻译表受到Normal World的保护。

  • ARMv8-A 可以兼容32位和64位TrustZone。当ARMv8-A运行AArch32 TrustZone 时,相当于ARMv7-A。二者区别主要在于EL3的不同,ARMv7-A中EL3 提供Secure Monitor 和Srcure OS,而ARMV8 中,EL3只提供Secure Monitor 。

获取security_in_an_armv8_system_100935_0100_en文档请关注文末名片,私信trustzone01文章来源地址https://www.toymoban.com/news/detail-834240.html

参考资料

  • security_in_an_armv8_system_100935_0100_en
  • documentation:https://developer.arm.com/documentation
  • Arm TrustZone explained:https://www.microcontrollertips.com/embedded-security-brief-arm-trustzone-explained/
  • trustedfirmware:https://www.trustedfirmware.org/
  • ARMv8-A TrustZone:https://blog.csdn.net/qq_24835087/article/details/122636928
  • 【ARM架构】armv8:https://www.cnblogs.com/dongxb/p/17149702.html

到了这里,关于【ARM架构】ARMv8-A 系统中的安全架构概述的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • ARMv8-A 与异常相关的指令

    最近一直在学习 ARMv8-A 的东西,记录一下与异常相关的指令。下面的内容基于AArch64讨论,暂不考虑 AArch32。 与异常生成相关的指令如下所示。下面主要学习 SVC 和 HVC 。 1. SVC SVC (Supervisor Call) 产生一个路由到 EL1 的异常,可以调用系统服务这些。此时, ESR_ELx.EC = 0x15 。 2. HVC

    2024年02月21日
    浏览(36)
  • Armv8-A Instruction Set Architecture

    快速链接: . 👉👉👉 个人博客笔记导读目录(全部) 👈👈👈 付费专栏-付费课程 【购买须知】: 【精选】ARMv8/ARMv9架构入门到精通-[目录] 👈👈👈 — 适合小白入门 【目录】ARMv8/ARMv9架构高级进阶-[目录]👈👈👈 — 高级进阶、小白勿买 【加群】ARM/TEE/ATF/SOC/芯片/安全-学习交

    2024年02月05日
    浏览(28)
  • Armv8-A memory model guide

    快速链接: . 👉👉👉 个人博客笔记导读目录(全部) 👈👈👈 付费专栏-付费课程 【购买须知】: 【精选】ARMv8/ARMv9架构入门到精通-[目录] 👈👈👈 — 适合小白入门 【目录】ARMv8/ARMv9架构高级进阶-[目录]👈👈👈 — 高级进阶、小白勿买 【加群】ARM/TEE/ATF/SOC/芯片/安全-学习交

    2024年02月02日
    浏览(33)
  • Learn the architecture - Before debugging on Armv8-A

    快速链接: . 👉👉👉 个人博客笔记导读目录(全部) 👈👈👈 付费专栏-付费课程 【购买须知】: 【精选】ARMv8/ARMv9架构入门到精通-[目录] 👈👈👈 — 适合小白入门 【目录】ARMv8/ARMv9架构高级进阶-[目录]👈👈👈 — 高级进阶、小白勿买 【加群】ARM/TEE/ATF/SOC/芯片/安全-学习交

    2024年01月23日
    浏览(39)
  • 【ARM Cortex-M 系列 3 番外篇 -- ARMv6, ARMv7, ARMv8, ARMv9 架构差异及精简指令集 与 复杂指令集 介绍】

    上篇文章:ARM Cortex-M 系列 2.1 – RT-Thread Cortex-M7 异常处理及 hardfault 处理分析 ARM架构是一种处理器架构,全称为高级精简指令集计算机(Advanced RISC Machine)。它是英国ARM公司设计的一种精简指令集( RISC )处理器架构,和复杂指令集( CISC )处理器架构相对。 CISC 与 RISC 差异

    2024年02月08日
    浏览(34)
  • ARMv8/ARMv9架构下特权程序之间的跳转模型与系统启动探析

    ARMv8和ARMv9架构是ARM公司推出的先进处理器架构,被广泛应用于移动设备、服务器和嵌入式系统。这两个架构的设计旨在提供更高的性能、更好的能效以及更强大的安全性。其中,不同特权程序之间的跳转模型是这一架构中关键的组成部分,对于系统的整体安全性和可靠性具有

    2024年03月16日
    浏览(34)
  • ARMv8架构简介

    ARMv8‑A 架构是针对应用程序配置文件的最新一代 ARM 架构。 ARMv8 这个名称用于描述整体架构,现在包括 32 位执行状态和 64 位执行状态。它引入了使用 64 位宽寄存器执行的能力,同时保持与现有 ARMv7 软件的向后兼容性。 ARMv8‑A 架构引入了许多更改,可以设计出性能显着提高

    2024年02月04日
    浏览(32)
  • ARMv8架构下,docker模拟X86架构

    执行docker pull centos:7.9.2009 --platform=arm64,获取arm64架构版本centos7.9镜像 执行docker inspect centos:7.9.2009,查看镜像版本信息 下载qemu-aarch64-static.tar.gz

    2024年02月12日
    浏览(31)
  • Armv8-M架构学习笔记

    Armv8-M架构概述: 关于Armv8架构和architecture profiles Arm定义了三个architecture profiles: A 应用程序profile: 支持基于内存管理单元(MMU)的虚拟内存系统架构(VMSA)。 支持A64、A32和T32指令集。 R 实时profile: 支持AArchi64或AArchi32执行状态。 支持A64或A32和T32指令集。 支持基于内存保

    2024年02月09日
    浏览(36)
  • ARMv8 - 安全机制 - 异常等级

    ARMv8架构处理器有一套异常等级(Exception level)机制,分成4个等级(EL0 ~ EL3)。 处理器运行时会处于其中的某个等级并且可以进行等级切换。 每个异常等级都拥有一些自己版本的特殊寄存器,例如:system ctrl 寄存器(sctlr_el1,sctlr_el2 …),程序状态寄存器(SPSR_EL1,SPSR_EL

    2024年02月13日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包