【lesson51】信号之信号处理

这篇具有很好参考价值的文章主要介绍了【lesson51】信号之信号处理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

信号处理

信号产生之后,信号可能无法被立即处理,一般在合适的时候处理。
1.在合适的时候处理(是什么时候?
信号相关的数据字段都是在进程PCB内部。
而进程工作的状态一般如下:
【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++
在内核态中,从内核态返回用户态的时候,进行信号检测和处理!

我们为什么会进入内核态?
进行系统调用,有一些缺陷、陷阱等!

怎么进入内核态?
使用int 80----->一般内置在系统调用函数中。

【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++

【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++
每个进程都有1GB的内核地址空间给内核用,那么内核如何用?
内核也是在进程地址空间上下文中run的。

那么可以执行进程切换的代码吗
可以

进程凭什么有权利执行OS的系统接口代码呢?
凭的是我们处于内核态还是用户态!

CPU的寄存器有2套,一套可见,一套不可见自用!
自用寄存器CR3---->表示当前CPU的执行权限1.内核态 3.用户态
int 80---->从用户态进入内核态

2.信号处理的整个流程
为什么要从用户态进入内核态?
怎么从用户态进入内核态?

【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++

【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++
内核如何实现信号的捕捉
如果信号的处理动作是用户自定义函数,在信号递达时就调用这个函数,这称为捕捉信号。由于信号处理函数的代码是在用户空间的,处理过程比较复杂,举例如下: 用户程序注册了SIGQUIT信号的处理函数sighandler。 当前正在执行main函数,这时发生中断或异常切换到内核态。 在中断处理完毕后要返回用户态的main函数之前检查到有信号SIGQUIT递达。 内核决定返回用户态后不是恢复main函数的上下文继续执行,而是执行sighandler函 数,sighandler和main函数使用不同的堆栈空间,它们之间不存在调用和被调用的关系,是 两个独立的控制流程。 sighandler函数返回后自动执行特殊的系统调用sigreturn再次进入内核态。 如果没有新的信号要递达,这次再返回用户态就是恢复main函数的上下文继续执行了。

信号操作
sigaction:
【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++
【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++
介绍函数
sigaction函数可以读取和修改与指定信号相关联的处理动作。调用成功则返回0,出错则返回- 1。signo是指定信号的编号。若act指针非空,则根据act修改该信号的处理动作。若oact指针非 空,则通过oact传出该信号原来的处理动作。act和oact指向sigaction结构体:

将sa_handler赋值为常数SIG_IGN传给sigaction表示忽略信号,赋值为常数SIG_DFL表示执行系统默认动作,赋值为一个函数指针表示用自定义函数捕捉信号,或者说向内核注册了一个信号处理函 数,该函数返回值为void,可以带一个int参数,通过参数可以得知当前信号的编号,这样就可以用同一个函数处理多种信号。显然,这也是一个回调函数,不是被main函数调用,而是被系统所调用。

【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++

代码:
【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++
运行结果:
【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++
处理信号的时候,执行自定义动作,如果处理信号期间,有来了同样的信号呢?OS会如何处理?
结论
当某个信号的处理函数被调用时,内核自动将当前信号加入进程的信号屏蔽字,当信号处理函数返回时自动恢复原来的信号屏蔽字,这样就保证了在处理某个信号时,如果这种信号再次产生,那么 它会被阻塞到当前处理结束为止。 如果在调用信号处理函数时,除了当前信号被自动屏蔽之外,还希望自动屏蔽另外一些信号,则用sa_mask字段说明这些需要额外屏蔽的信号,当信号处理函数返回时自动恢复原来的信号屏蔽字。 sa_flags字段包含一些选项,本章的代码都把sa_flags设为0,sa_sigaction是实时信号的处理函数,本章不详细解释这两个字段,有兴趣的同学可以在了解一下。
sa_flags:
【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++
验证上面结论:
代码:

#include <iostream>
#include <signal.h>
#include <unistd.h>

void showPending(sigset_t& pending)
{
    for(int sig = 1; sig <= 31; sig++)
    {
        if(sigismember(&pending,sig))
        {
            std::cout << "1";
        }
        else
        {
            std::cout << "0";
        }
    }

    std::cout << std::endl;
    
}
void handler(int signum)
{
    std::cout << "获取到一个信号: " << signum << std::endl;
    std::cout << "获取到一个信号: " << signum << std::endl;

    sigset_t pending;
    int cnt = 0;
    while(true)
    {
        sigpending(&pending);
        showPending(pending);
        if(cnt == 10)
        {
            break;
        }

        cnt++;
        sleep(1);
    }
}
int main()
{

    signal(2, SIG_DFL);
    struct sigaction act;
    struct sigaction oact;

    //初始化相关信号信息
    act.sa_flags = 0;
    sigemptyset(&act.sa_mask);
    act.sa_handler = handler;

    // 设置进当前调用进程的pcb中
    sigaction(2,&act,&oact);
    std::cout << "default action : " << (int)(oact.sa_handler) << std::endl;

    while (true)
        sleep(1);
    return 0;
}

运行结果:
【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++
所以验证了当某个信号的处理函数被调用时,内核自动将当前信号加入进程的信号屏蔽字,当信号处理函数返回时自动恢复原来的信号屏蔽字,这样就保证了在处理某个信号时,如果这种信号再次产生,那么 它会被阻塞到当前处理结束为止。

可重入函数

不可重入函数:不可重入函数,重入时会发生的问题
【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++
main函数调用insert函数向一个链表head中插入节点node1,插入操作分为两步,刚做完第一步 时候,因为硬件中断使进程切换到内核,再次回用户态之前检查到有信号待处理,于是切换到sighandler函数,sighandler也调用insert函数向同一个链表head中插入节点node2,插入操作两步都做完之后从sighandler返回内核态,再次回到用户态就从main函数调用的insert函数中继续 往下执行,先前做第一步之后被打断,现在继续做完第二步结果是,main函数和sighandler先后 向链表中插入两个节点,而最后只有一个节点真正插入链表中了

像上例这样,insert函数被不同的控制流程调用,有可能在第一次调用还没返回时就再次进入该函数,这称为重入,insert函数访问一个全局链表,有可能因为重入而造成错乱,像这样的函数称为不可重入函数,反之,如果一个函数只访问自己的局部变量或参数,则称为可重入(Reentrant) 函数。想一下,为什么两个不同的控制流程调用同一个函数,访问它的同一个局部变量或参数就不会造成错乱?

可重入函数和不可重入函数都是函数的一种特征,目前90%都是可重入函数。

如果一个函数符合以下条件之一则是不可重入的:
调用了malloc或free,因为malloc也是用全局链表来管理堆的。
调用了标准I/O库函数。标准I/O库的很多实现都以不可重入的方式使用全局数据结构。

volatile

该关键字在C当中我们已经有所涉猎,今天我们站在信号的角度重新理解一下
我们看下面的代码:
【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++
运行代码:
【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++
【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++
这里我们发现进行正常退出。
但是如果我们把编译器的优化等级提升到最高呢?
【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++
【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++
运行代码:
【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++
我们发现进程一直死循环不会退出,但是我们不是更改了flag值吗?
因为编译器有时候会自动给我们进行代码,优化这样就不会去内存读取修改后的flag还是一直用之前的flag。
volatile字段就是让编译器不要优化这个flag,还是继续向内存读取flag。

优化情况下,键入 CTRL-C ,2号信号被捕捉,执行自定义动作,修改 flag=1 ,但是 while 条件依旧满足,进程继续运行!但是很明显flag肯定已经被修改了,但是为何循环依旧执行?很明显, while 循环检查的flag,并不是内存中最新的flag,这就存在了数据二异性的问题。 while 检测的flag其实已经因为优化,被放在了CPU寄存器当中。如何解决呢?很明显需要 volatile

【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++
运行代码:
【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++
volatile 作用:保持内存的可见性,告知编译器,被该关键字修饰的变量,不允许被优化,对该变量的任何操作,都必须在真实的内存中进行操作

SIGCHLD信号

之前讲过用wait和waitpid函数清理僵尸进程,父进程可以阻塞等待子进程结束,也可以非阻塞地查询是否有子进程结束等待清理(也就是轮询的方式)。采用第一种方式,父进程阻塞了就不能处理自己的工作了;采用第二种方式,父进程在处理自己的工作的同时还要记得时不时地轮询一 下,程序实现复杂。

其实子进程在终止时会给父进程发SIGCHLD信号,该信号的默认处理动作是忽略,父进程可以自 定义SIGCHLD信号的处理函数,这样父进程只需专心处理自己的工作,不必关心子进程了,子进程 终止时会通知父进程,父进程在信号处理函数中调用wait清理子进程即可。

事实上,由于UNIX的历史原因,要想不产生僵尸进程还有另外一种办法:父进程调 用sigaction将SIGCHLD的处理动作置为SIG_IGN,这样fork出来的子进程在终止时会自动清理掉,不会产生僵尸进程,也不会通知父进程。系统默认的忽略动作和用户用sigaction函数自定义的忽略 通常是没有区别的,但这是一个特例。此方法对于Linux可用,但不保证在其它UNIX系统上都可 用。请编写程序验证这样做不会产生僵尸进程。

子进程退出会向父进程发送SIGCHLD信号。
证明:
【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++
运行结果:
【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++
【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++

如果父进程不关心子进程的任何退出情况,直接设置默认动作为SIG_IGN
【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++

那么接下来我们父进程就可以不用阻塞式或者非阻塞式的等待进程了,可以执行自己的代码,等待收到信号了,再去处理进程。
demo代码

#include <iostream>
#include <signal.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <wait.h>

void handler(int sig)
{
    pid_t id;
    while ((id = waitpid(-1, NULL, WNOHANG)) > 0)
    {
        printf("wait child success: %d\n", id);
    }
    printf("child is quit! %d\n", getpid());
}
int main()
{
    signal(SIGCHLD, handler);
    pid_t cid;
    if ((cid = fork()) == 0)
    { // child
        printf("child : %d\n", getpid());
        sleep(3);
        exit(1);
    }
    while (1)
    {
        printf("father proc is doing some thing!\n");
        sleep(1);
    }
    return 0;
}

运行结果:
【lesson51】信号之信号处理,linux,信号处理,Linux,信号,C++文章来源地址https://www.toymoban.com/news/detail-835011.html

到了这里,关于【lesson51】信号之信号处理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【linux】进程信号——信号的保存和处理

    上一章主要讲述了信号的产生:【linux】进程信号——信号的产生 这篇文章主要讲后面两个过程。 实际执行信号的处理动作称为 信号递达 (Delivery)。 信号从产生到递达之间的状态,称为 信号未决 (Pending)。 因为信号 不是被立即处理的 ,所以在信号产生之后,递达之前的这个

    2024年02月03日
    浏览(41)
  • 【Linux从入门到精通】信号(信号保存 & 信号的处理)

      本篇文章接着信号(初识信号 信号的产生)进行讲解。学完信号的产生后,我们也了解了信号的一些结论。同时还留下了很多疑问: 上篇文章所说的所有信号产生,最终都要有OS来进行执行,为什么呢? OS是进程的管理者 。 信号的处理是否是立即处理的? 在合适的时候。

    2024年02月09日
    浏览(43)
  • Linux——信号处理

    在Linux系统中, 信号处理 是一个非常重要的概念,它允许 操作系统在特定事件发生时 通知进程。信号可以由 硬件异常、用户输入、软件条件 等多种来源产生。为了有效地处理这些信号,Linux提供了一系列的系统调用和函数,其中 signal 、 sigaction 和 sigprocmask 是三个核心的函

    2024年03月09日
    浏览(35)
  • linux信号处理机制

            信号检测是项目开发中必不可少的!提到信号处理机制,很多人都会想到signal函数吧         除了这种方式,还有一种操作信号集的方式更为精确,能够屏蔽,添加,删除,操作等某个信号。这些函数仅支持对 POSIX 信号集进行操作。首先了解下这几个函数: 描

    2024年01月23日
    浏览(44)
  • Linux进程 ----- 信号处理

    目录 前言 一、信号的处理时机 1.1 处理时面临的情况 1.2 “合适”的时机 二、用户态与内核态 2.1 概念理论 2.2 再现 进程地址空间 2.3 信号处理过程 三、信号的捕捉 3.1 内核实现 3.2 sigaction 四、信号部分小结 从信号产生到信号保存,中间经历了很多,当操作系统准备对信号进

    2024年03月21日
    浏览(76)
  • 【Linux】信号的处理

    信号篇终章 文章目录 前言 一、信号的处理         1.可重入函数         2.volatile         3.SIGCHLD信号 总结 在前两篇linux文章中我们详细的讲解了信号的产生和信号的保存,今天来到最后一个重点信号的处理,对于信号的处理我们会重新引入进程地址空间的知识,并

    2024年02月05日
    浏览(38)
  • 【Linux】进程信号 -- 信号保存与递达 | 信号捕捉 | 僵尸进程的信号处理方法

    实际执行信号的处理动作称为信号递达(Delivery) 信号从产生到递达之间的状态,称为信号未决(Pending)。 已经收到但未处理的状态 进程可以选择阻塞 (Block )某个信号 被阻塞的信号产生时将保持在未决状态,直到进程解除对此信号的阻塞,才执行递达的动作 注意,阻塞和忽略是

    2024年02月16日
    浏览(48)
  • 【Linux学习】信号——信号保存 | 信号处理 | 不可重入函数,volatile,SIGCHLD信号

    🐱作者:一只大喵咪1201 🐱专栏:《Linux学习》 🔥格言: 你只管努力,剩下的交给时间! 信号的产生以及详细讲解了,有兴趣的小伙伴可以去看看,传送门。接下来介绍信号的保存和信号处理。 首先介绍几个新的概念: 信号递达(Delivery):实际执行信号的处理动作。 信号

    2023年04月14日
    浏览(44)
  • Linux信号概念、认识、处理动作 ( 2 ) -【Linux通信架构系列 】

    点击进入系列文章总目录 C++技能系列 Linux通信架构系列 C++高性能优化编程系列 深入理解软件架构设计系列 高级C++并发线程编程 期待你的关注哦!!! 现在的一切都是为将来的梦想编织翅膀,让梦想在现实中展翅高飞。 Now everything is for the future of dream weaving wings, let the dre

    2024年02月11日
    浏览(44)
  • 【探索Linux】—— 强大的命令行工具 P.18(进程信号 —— 信号捕捉 | 信号处理 | sigaction() )

    在Linux系统中,信号是进程之间通信的重要方式之一。前面的两篇文章已经介绍了信号的产生和保存,本篇文章将进一步探讨信号的捕捉、处理以及使用sigaction()函数的方法。信号捕捉是指进程在接收到信号时采取的行动,而信号处理则是指对接收到的信号进行适当的处理逻辑

    2024年02月05日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包