Hadoop3.x基础(2)- HDFS

这篇具有很好参考价值的文章主要介绍了Hadoop3.x基础(2)- HDFS。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

来源:B站尚硅谷

HDFS概述

HDFS产出背景及定义

1)HDFS产生背景
随着数据量越来越大,在一个操作系统存不下所有的数据,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统。HDFS只是分布式文件管理系统中的一种
2)HDFS定义
HDFS(Hadoop Distributed File System),它是一个文件系统,用于存储文件,通过目录树来定位文件;其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色。
HDFS的使用场景:适合一次写入,多次读出的场景。一个文件经过创建、写入和关闭之后就不需要改变

HDFS优缺点

  • 优点
    1)高容错性
    数据自动保存多个副本。它通过增加副本的形式,提高容错性。
    某一个副本丢失以后,它可以自动恢复。
    2)适合处理大数据

    • 数据规模:能够处理数据规模达到GB、TB、甚至PB级别的数据;
    • 文件规模:能够处理百万规模以上的文件数量,数量相当之大。
      3)可构建在廉价机器上,通过多副本机制,提高可靠性。
  • 缺点
    1)不适合低延时数据访问,比如毫秒级的存储数据,是做不到的。
    2)无法高效的对大量小文件进行存储。

    • 存储大量小文件的话,它会占用NameNode大量的内存来存储文件目录和块信息。这样是不可取的,因为NameNode的内存总是有限的;
    • 小文件存储的寻址时间会超过读取时间,它违反了HDFS的设计目标。

    3)不支持并发写入、文件随机修改。

    • 一个文件只能有一个写,不允许多个线程同时写;
    • 仅支持数据append(追加),不支持文件的随机修改。

HDFS组成架构

Hadoop3.x基础(2)- HDFS,大数据基础,大数据,hadoop
1)NameNode(nn):就是Master,它是一个主管、管理者。

  • (1)管理HDFS的名称空间;
  • (2)配置副本策略;
  • (3)管理数据块(Block)映射信息;
  • (4)处理客户端读写请求。

2)DataNode:就是Slave。NameNode下达命令,DataNode执行实际的操作。

  • (1)存储实际的数据块;
  • (2)执行数据块的读/写操作。

3)Client:就是客户端。

  • (1)文件切分。文件上传HDFS的时候,Client将文件切分成一个一个的Block,然后进行上传;
  • (2)与NameNode交互,获取文件的位置信息;
  • (3)与DataNode交互,读取或者写入数据;
  • (4)Client提供一些命令来管理HDFS,比如NameNode格式化;
  • (5)Client可以通过一些命令来访问HDFS,比如对HDFS增删查改操作;

4)Secondary NameNode:并非NameNode的热备。当NameNode挂掉的时候,它并不能马上替换NameNode并提供服务。

  • (1)辅助NameNode,分担其工作量,比如定期合并Fsimage和Edits,并推送给NameNode ;
  • (2)在紧急情况下,可辅助恢复NameNode。

HDFS文件块大小(面试重点)

HDFS中的文件在物理上是分块存储(Block),块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在Hadoop2.x/3.x版本中是128M,1.x版本中是64M
Hadoop3.x基础(2)- HDFS,大数据基础,大数据,hadoop
思考:为什么块的大小不能设置太小,也不能设置太大?
(1)HDFS的块设置太小,会增加寻址时间,程序一直在找块的开始位置;
(2)如果块设置的太大,从磁盘传输数据的时间会明显大于定位这个块开始位置所需的时间。导致程序在处理这块数据时,会非常慢。
总结:HDFS块的大小设置主要取决于磁盘传输速率

HDFS的Shell操作(开发重点)

基本语法

hadoop fs 具体命令hdfs dfs 具体命令
两个是完全相同的。

命令大全

[jjm@hadoop102 hadoop-3.1.3]$ bin/hadoop fs

[-appendToFile <localsrc> ... <dst>]
        [-cat [-ignoreCrc] <src> ...]
        [-chgrp [-R] GROUP PATH...]
        [-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]
        [-chown [-R] [OWNER][:[GROUP]] PATH...]
        [-copyFromLocal [-f] [-p] <localsrc> ... <dst>]
        [-copyToLocal [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
        [-count [-q] <path> ...]
        [-cp [-f] [-p] <src> ... <dst>]
        [-df [-h] [<path> ...]]
        [-du [-s] [-h] <path> ...]
        [-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
        [-getmerge [-nl] <src> <localdst>]
        [-help [cmd ...]]
        [-ls [-d] [-h] [-R] [<path> ...]]
        [-mkdir [-p] <path> ...]
        [-moveFromLocal <localsrc> ... <dst>]
        [-moveToLocal <src> <localdst>]
        [-mv <src> ... <dst>]
        [-put [-f] [-p] <localsrc> ... <dst>]
        [-rm [-f] [-r|-R] [-skipTrash] <src> ...]
        [-rmdir [--ignore-fail-on-non-empty] <dir> ...]
<acl_spec> <path>]]
        [-setrep [-R] [-w] <rep> <path> ...]
        [-stat [format] <path> ...]
        [-tail [-f] <file>]
        [-test -[defsz] <path>]
        [-text [-ignoreCrc] <src> ...]

常用命令实操

准备工作

1)启动Hadoop集群(方便后续的测试)

[jjm@hadoop102 hadoop-3.1.3]$ sbin/start-dfs.sh
[jjm@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh

2)-help:输出这个命令参数

[jjm@hadoop102 hadoop-3.1.3]$ hadoop fs -help rm

3)创建/sanguo文件夹

[jjm@hadoop102 hadoop-3.1.3]$ hadoop fs -mkdir /sanguo

上传

1)-moveFromLocal:从本地剪切粘贴到HDFS

[jjm@hadoop102 hadoop-3.1.3]$ vim shuguo.txt
输入:
shuguo

[jjm@hadoop102 hadoop-3.1.3]$ hadoop fs  -moveFromLocal  ./shuguo.txt  /sanguo

2)-copyFromLocal:从本地文件系统中拷贝文件到HDFS路径去

[jjm@hadoop102 hadoop-3.1.3]$ vim weiguo.txt
输入:
weiguo

[jjm@hadoop102 hadoop-3.1.3]$ hadoop fs -copyFromLocal weiguo.txt /sanguo

3)-put:等同于copyFromLocal,生产环境更习惯用put

[jjm@hadoop102 hadoop-3.1.3]$ vim wuguo.txt
输入:
wuguo

[jjm@hadoop102 hadoop-3.1.3]$ hadoop fs -put ./wuguo.txt /sanguo

4)-appendToFile:追加一个文件到已经存在的文件末尾

[jjm@hadoop102 hadoop-3.1.3]$ vim liubei.txt
输入:
liubei

[jjm@hadoop102 hadoop-3.1.3]$ hadoop fs -appendToFile liubei.txt /sanguo/shuguo.txt

下载

1)-copyToLocal:从HDFS拷贝到本地

[jjm@hadoop102 hadoop-3.1.3]$ hadoop fs -copyToLocal /sanguo/shuguo.txt ./

2)-get:等同于copyToLocal,生产环境更习惯用get

[jjm@hadoop102 hadoop-3.1.3]$ hadoop fs -get /sanguo/shuguo.txt ./shuguo2.txt

HDFS直接操作

1)-ls: 显示目录信息

[jjm@hadoop102 hadoop-3.1.3]$ hadoop fs -ls /sanguo

2)-cat:显示文件内容

[jjm@hadoop102 hadoop-3.1.3]$ hadoop fs -cat /sanguo/shuguo.txt

3)-chgrp、-chmod、-chown:Linux文件系统中的用法一样,修改文件所属权限

[jjm@hadoop102 hadoop-3.1.3]$ hadoop fs  -chmod 666  /sanguo/shuguo.txt
[jjm@hadoop102 hadoop-3.1.3]$ hadoop fs  -chown  atguigu:atguigu   /sanguo/shuguo.txt

4)-mkdir:创建路径

[jjm@hadoop102 hadoop-3.1.3]$ hadoop fs -mkdir /jinguo

5)-cp:从HDFS的一个路径拷贝到HDFS的另一个路径

[jjm@hadoop102 hadoop-3.1.3]$ hadoop fs -cp /sanguo/shuguo.txt /jinguo

6)-mv:在HDFS目录中移动文件

[jjm@hadoop102 hadoop-3.1.3]$ hadoop fs -mv /sanguo/wuguo.txt /jinguo
[jjm@hadoop102 hadoop-3.1.3]$ hadoop fs -mv /sanguo/weiguo.txt /jinguo

7)-tail:显示一个文件的末尾1kb的数据

[jjm@hadoop102 hadoop-3.1.3]$ hadoop fs -tail /jinguo/shuguo.txt

8)-rm:删除文件或文件夹

[jjm@hadoop102 hadoop-3.1.3]$ hadoop fs -rm /sanguo/shuguo.txt

9)-rm -r:递归删除目录及目录里面内容

[jjm@hadoop102 hadoop-3.1.3]$ hadoop fs -rm -r /sanguo

10)-du统计文件夹的大小信息

[jjm@hadoop102 hadoop-3.1.3]$ hadoop fs -du -s -h /jinguo
27  81  /jinguo
[jjm@hadoop102 hadoop-3.1.3]$ hadoop fs -du  -h /jinguo
14  42  /jinguo/shuguo.txt
7   21   /jinguo/weiguo.txt
6   18   /jinguo/wuguo.tx

说明:27表示文件大小;81表示27*3个副本;/jinguo表示查看的目录
11)-setrep:设置HDFS中文件的副本数量

[jjm@hadoop102 hadoop-3.1.3]$ hadoop fs -setrep 10 /jinguo/shuguo.txt

这里设置的副本数只是记录在NameNode的元数据中,是否真的会有这么多副本,还得看DataNode的数量。因为目前只有3台设备,最多也就3个副本,只有节点数的增加到10台时,副本数才能达到10。

HDFS的API操作

HDFS的API案例实操

HDFS文件上传(测试参数优先级)

1)编写源代码

@Test
public void testCopyFromLocalFile() throws IOException, InterruptedException, URISyntaxException {

    // 1 获取文件系统
    Configuration configuration = new Configuration();
    configuration.set("dfs.replication", "2");
    FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:8020"), configuration, "jjm");

    // 2 上传文件
    fs.copyFromLocalFile(new Path("d:/sunwukong.txt"), new Path("/xiyou/huaguoshan"));

    // 3 关闭资源
    fs.close();

2)将hdfs-site.xml拷贝到项目的resources资源目录下

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
	<property>
		<name>dfs.replication</name>
         <value>1</value>
	</property>
</configuration>

3)参数优先级
参数优先级排序:(1)客户端代码中设置的值 >(2)ClassPath下的用户自定义配置文件 >(3)然后是服务器的自定义配置(xxx-site.xml) >(4)服务器的默认配置(xxx-default.xml)

HDFS文件下载

@Test
public void testCopyToLocalFile() throws IOException, InterruptedException, URISyntaxException{

    // 1 获取文件系统
    Configuration configuration = new Configuration();
    FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:8020"), configuration, "jjm");
    
    // 2 执行下载操作
    // boolean delSrc 指是否将原文件删除
    // Path src 指要下载的文件路径
    // Path dst 指将文件下载到的路径
    // boolean useRawLocalFileSystem 是否开启文件校验
    fs.copyToLocalFile(false, new Path("/xiyou/huaguoshan/sunwukong.txt"), new Path("d:/sunwukong2.txt"), true);
    
    // 3 关闭资源
    fs.close();
}

注意:如果执行上面代码,下载不了文件,有可能是你电脑的微软支持的运行库少,需要安装一下微软运行库。

HDFS文件更名和移动

@Test
public void testRename() throws IOException, InterruptedException, URISyntaxException{

	// 1 获取文件系统
	Configuration configuration = new Configuration();
	FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:8020"), configuration, "jjm"); 
		
	// 2 修改文件名称
	fs.rename(new Path("/xiyou/huaguoshan/sunwukong.txt"), new Path("/xiyou/huaguoshan/meihouwang.txt"));
		
	// 3 关闭资源
	fs.close();
}

HDFS删除文件和目录

@Test
public void testDelete() throws IOException, InterruptedException, URISyntaxException{

	// 1 获取文件系统
	Configuration configuration = new Configuration();
	FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:8020"), configuration, "jjm");
		
	// 2 执行删除
	fs.delete(new Path("/xiyou"), true);
		
	// 3 关闭资源
	fs.close();
}

HDFS文件详情查看

查看文件名称、权限、长度、块信息

@Test
public void testListFiles() throws IOException, InterruptedException, URISyntaxException {

	// 1获取文件系统
	Configuration configuration = new Configuration();
	FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:8020"), configuration, "jjm");

	// 2 获取文件详情
	RemoteIterator<LocatedFileStatus> listFiles = fs.listFiles(new Path("/"), true);

	while (listFiles.hasNext()) {
		LocatedFileStatus fileStatus = listFiles.next();

		System.out.println("========" + fileStatus.getPath() + "=========");
		System.out.println(fileStatus.getPermission());
		System.out.println(fileStatus.getOwner());
		System.out.println(fileStatus.getGroup());
		System.out.println(fileStatus.getLen());
		System.out.println(fileStatus.getModificationTime());
		System.out.println(fileStatus.getReplication());
		System.out.println(fileStatus.getBlockSize());
		System.out.println(fileStatus.getPath().getName());

		// 获取块信息
		BlockLocation[] blockLocations = fileStatus.getBlockLocations();
		System.out.println(Arrays.toString(blockLocations));
	}
	// 3 关闭资源
	fs.close();
}

HDFS文件和文件夹判断

@Test
public void testListStatus() throws IOException, InterruptedException, URISyntaxException{

    // 1 获取文件配置信息
    Configuration configuration = new Configuration();
    FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:8020"), configuration, "jjm");

    // 2 判断是文件还是文件夹
    FileStatus[] listStatus = fs.listStatus(new Path("/"));

    for (FileStatus fileStatus : listStatus) {

        // 如果是文件
        if (fileStatus.isFile()) {
            System.out.println("f:"+fileStatus.getPath().getName());
        }else {
            System.out.println("d:"+fileStatus.getPath().getName());
        }
    }

    // 3 关闭资源
    fs.close();
}

HDFS的读写流程(面试重点)

HDFS写数据流程

剖析文件写入

Hadoop3.x基础(2)- HDFS,大数据基础,大数据,hadoop

  • (1)客户端通过Distributed FileSystem模块向NameNode请求上传文件,NameNode检查目标文件是否已存在,父目录是否存在。
  • (2)NameNode返回是否可以上传。
  • (3)客户端请求第一个Block上传到哪几个DataNode服务器上。
  • (4)NameNode返回3个DataNode节点,分别为dn1、dn2、dn3。
  • (5)客户端通过FSDataOutputStream模块请求dn1上传数据,dn1收到请求会继续调用dn2,然后调佣dn3,将这个通信管道建立完成。
  • (6)dn1、dn2、dn3逐级应答客户端。
  • (7)客户端开始往dn1上传第一个Block(先从磁盘读取数据放到一个本地内存缓存),以Packet为单位,dn1收到一个Packet就会传给dn2,dn2传给dn3;dn1每传一个Packet会放入一个应答队列等待应答。
  • (8)当一个Block传输完成之后,客户端再次请求NameNode上传第二个Block的服务器。(重复执行3-7步)。

网络拓扑-节点距离计算

在HDFS写数据的过程中,NameNode会选择距离待上传数据最近距离的DataNode接收数据。那么这个最近距离怎么计算呢?
节点距离:两个节点到达最近的共同祖先的距离总和
Hadoop3.x基础(2)- HDFS,大数据基础,大数据,hadoop

机架感知(副本存储节点选择)

  • 1)机架感知说明
    在一般情况下,当复制因子为3时,HDFS的放置策略是,如果写入器在datanode上,则在本地机器上放置一个副本,否则在一个随机的datanode上,另一个副本在另一个(远程)机架上的节点上,最后一个副本在同一个远程机架上的不同节点上
  • 2)Hadoop3.1.3副本节点选择
    第一个副本在Client所处的节点上。如果客户端在集群外,随机选一个。
    第二个副本在另一个机架的随机一个节点
    第三个副本在第二个副本所在机架的随机节点
    Hadoop3.x基础(2)- HDFS,大数据基础,大数据,hadoop

HDFS读数据流程

Hadoop3.x基础(2)- HDFS,大数据基础,大数据,hadoop

  • (1)客户端通过DistributedFileSystem向NameNode请求下载文件,NameNode通过查询元数据,找到文件块所在的DataNode地址。
  • (2)挑选一台DataNode(就近原则,然后随机)服务器,请求读取数据。
  • (3)DataNode开始传输数据给客户端(从磁盘里面读取数据输入流,以Packet为单位来做校验)。
  • (4)客户端以Packet为单位接收,先在本地缓存,然后写入目标文件。

NameNode和SecondaryNameNode

NN和2NN工作机制

思考:NameNode中的元数据是存储在哪里的?
首先,我们做个假设,如果存储在NameNode节点的磁盘中,因为经常需要进行随机访问,还有响应客户请求,必然是效率过低。因此,元数据需要存放在内存中。但如果只存在内存中,一旦断电,元数据丢失,整个集群就无法工作了。因此产生在磁盘中备份元数据的FsImage
这样又会带来新的问题,当在内存中的元数据更新时,如果同时更新FsImage,就会导致效率过低,但如果不更新,就会发生一致性问题,一旦NameNode节点断电,就会产生数据丢失。因此,引入Edits文件(只进行追加操作,效率很高)。每当元数据有更新或者添加元数据时,修改内存中的元数据并追加到Edits中。这样,一旦NameNode节点断电,可以通过FsImage和Edits的合并,合成元数据。
但是,如果长时间添加数据到Edits中,会导致该文件数据过大,效率降低,而且一旦断电,恢复元数据需要的时间过长。因此,需要定期进行FsImage和Edits的合并,如果这个操作由NameNode节点完成,又会效率过低。因此,引入一个新的节点SecondaryNamenode,专门用于FsImage和Edits的合并
Hadoop3.x基础(2)- HDFS,大数据基础,大数据,hadoop

  • 1)第一阶段:NameNode启动
    (1)第一次启动NameNode格式化后,创建Fsimage和Edits文件。如果不是第一次启动,直接加载编辑日志和镜像文件到内存。
    (2)客户端对元数据进行增删改的请求。
    (3)NameNode记录操作日志,更新滚动日志。
    (4)NameNode在内存中对元数据进行增删改。
  • 2)第二阶段:Secondary NameNode工作
    (1)Secondary NameNode询问NameNode是否需要CheckPoint。直接带回NameNode是否检查结果。
    (2)Secondary NameNode请求执行CheckPoint。
    (3)NameNode滚动正在写的Edits日志。
    (4)将滚动前的编辑日志和镜像文件拷贝到Secondary NameNode。
    (5)Secondary NameNode加载编辑日志和镜像文件到内存,并合并。
    (6)生成新的镜像文件fsimage.chkpoint。
    (7)拷贝fsimage.chkpoint到NameNode。
    (8)NameNode将fsimage.chkpoint重新命名成fsimage。

Fsimage和Edits解析

NameNode被格式化之后,将在/opt/module/hadoop-3.1.3/data/tmp/dfs/name/current目录中产生如下文件
fsimage_0000000000000000000
fsimage_0000000000000000000.md5
seen_txid
VERSION

(1)Fsimage文件:HDFS文件系统元数据的一个永久性的检查点,其中包含HDFS文件系统的所有目录和文件inode的序列化信息。
(2)Edits文件:存放HDFS文件系统的所有更新操作的路径,文件系统客户端执行的所有写操作首先会被记录到Edits文件中。
(3)seen_txid文件保存的是一个数字,就是最后一个edits_的数字
(4)每次NameNode启动的时候都会将Fsimage文件读入内存,加载Edits里面的更新操作,保证内存中的元数据信息是最新的、同步的,可以看成NameNode启动的时候就将Fsimage和Edits文件进行了合并。

  • 1)oiv查看Fsimage文件
    (1)查看oiv和oev命令
[jjm@hadoop102 current]$ hdfs
oiv            apply the offline fsimage viewer to an fsimage
oev            apply the offline edits viewer to an edits file

(2)基本语法
hdfs oiv -p 文件类型 -i镜像文件 -o 转换后文件输出路径
(3)案例实操

[jjm@hadoop102 current]$ pwd
/opt/module/hadoop-3.1.3/data/dfs/name/current

[jjm@hadoop102 current]$ hdfs oiv -p XML -i fsimage_0000000000000000025 -o /opt/module/hadoop-3.1.3/fsimage.xml

[jjm@hadoop102 current]$ cat /opt/module/hadoop-3.1.3/fsimage.xml

将显示的xml文件内容拷贝到Idea中创建的xml文件中,并格式化。部分显示结果如下。

<inode>
	<id>16386</id>
	<type>DIRECTORY</type>
	<name>user</name>
	<mtime>1512722284477</mtime>
	<permission>jjm:supergroup:rwxr-xr-x</permission>
	<nsquota>-1</nsquota>
	<dsquota>-1</dsquota>
</inode>
<inode>
	<id>16387</id>
	<type>DIRECTORY</type>
	<name>jjm</name>
	<mtime>1512790549080</mtime>
	<permission>jjm:supergroup:rwxr-xr-x</permission>
	<nsquota>-1</nsquota>
	<dsquota>-1</dsquota>
</inode>
<inode>
	<id>16389</id>
	<type>FILE</type>
	<name>wc.input</name>
	<replication>3</replication>
	<mtime>1512722322219</mtime>
	<atime>1512722321610</atime>
	<perferredBlockSize>134217728</perferredBlockSize>
	<permission>jjm:supergroup:rw-r--r--</permission>
	<blocks>
		<block>
			<id>1073741825</id>
			<genstamp>1001</genstamp>
			<numBytes>59</numBytes>
		</block>
	</blocks>
</inode >

思考:可以看出,Fsimage中没有记录块所对应DataNode,为什么?
在集群启动后,要求DataNode上报数据块信息,并间隔一段时间后再次上报。

  • 2)oev查看Edits文件
    (1)基本语法
    hdfs oev -p 文件类型 -i编辑日志 -o 转换后文件输出路径
    (2)案例实操
[jjm@hadoop102 current]$ hdfs oev -p XML -i edits_0000000000000000012-0000000000000000013 -o /opt/module/hadoop-3.1.3/edits.xml

[jjm@hadoop102 current]$ cat /opt/module/hadoop-3.1.3/edits.xml

将显示的xml文件内容拷贝到Idea中创建的xml文件中,并格式化。显示结果如下。

<?xml version="1.0" encoding="UTF-8"?>
<EDITS>
	<EDITS_VERSION>-63</EDITS_VERSION>
	<RECORD>
		<OPCODE>OP_START_LOG_SEGMENT</OPCODE>
		<DATA>
			<TXID>129</TXID>
		</DATA>
	</RECORD>
	<RECORD>
		<OPCODE>OP_ADD</OPCODE>
		<DATA>
			<TXID>130</TXID>
			<LENGTH>0</LENGTH>
			<INODEID>16407</INODEID>
			<PATH>/hello7.txt</PATH>
			<REPLICATION>2</REPLICATION>
			<MTIME>1512943607866</MTIME>
			<ATIME>1512943607866</ATIME>
			<BLOCKSIZE>134217728</BLOCKSIZE>
			<CLIENT_NAME>DFSClient_NONMAPREDUCE_-1544295051_1</CLIENT_NAME>
			<CLIENT_MACHINE>192.168.10.102</CLIENT_MACHINE>
			<OVERWRITE>true</OVERWRITE>
			<PERMISSION_STATUS>
				<USERNAME>jjm</USERNAME>
				<GROUPNAME>supergroup</GROUPNAME>
				<MODE>420</MODE>
			</PERMISSION_STATUS>
			<RPC_CLIENTID>908eafd4-9aec-4288-96f1-e8011d181561</RPC_CLIENTID>
			<RPC_CALLID>0</RPC_CALLID>
		</DATA>
	</RECORD>
	<RECORD>
		<OPCODE>OP_ALLOCATE_BLOCK_ID</OPCODE>
		<DATA>
			<TXID>131</TXID>
			<BLOCK_ID>1073741839</BLOCK_ID>
		</DATA>
	</RECORD>
	<RECORD>
		<OPCODE>OP_SET_GENSTAMP_V2</OPCODE>
		<DATA>
			<TXID>132</TXID>
			<GENSTAMPV2>1016</GENSTAMPV2>
		</DATA>
	</RECORD>
	<RECORD>
		<OPCODE>OP_ADD_BLOCK</OPCODE>
		<DATA>
			<TXID>133</TXID>
			<PATH>/hello7.txt</PATH>
			<BLOCK>
				<BLOCK_ID>1073741839</BLOCK_ID>
				<NUM_BYTES>0</NUM_BYTES>
				<GENSTAMP>1016</GENSTAMP>
			</BLOCK>
			<RPC_CLIENTID></RPC_CLIENTID>
			<RPC_CALLID>-2</RPC_CALLID>
		</DATA>
	</RECORD>
	<RECORD>
		<OPCODE>OP_CLOSE</OPCODE>
		<DATA>
			<TXID>134</TXID>
			<LENGTH>0</LENGTH>
			<INODEID>0</INODEID>
			<PATH>/hello7.txt</PATH>
			<REPLICATION>2</REPLICATION>
			<MTIME>1512943608761</MTIME>
			<ATIME>1512943607866</ATIME>
			<BLOCKSIZE>134217728</BLOCKSIZE>
			<CLIENT_NAME></CLIENT_NAME>
			<CLIENT_MACHINE></CLIENT_MACHINE>
			<OVERWRITE>false</OVERWRITE>
			<BLOCK>
				<BLOCK_ID>1073741839</BLOCK_ID>
				<NUM_BYTES>25</NUM_BYTES>
				<GENSTAMP>1016</GENSTAMP>
			</BLOCK>
			<PERMISSION_STATUS>
				<USERNAME>jjm</USERNAME>
				<GROUPNAME>supergroup</GROUPNAME>
				<MODE>420</MODE>
			</PERMISSION_STATUS>
		</DATA>
	</RECORD>
</EDITS >

思考:NameNode如何确定下次开机启动的时候合并哪些Edits?
如果当前是fsimage_0000000000000000355,那么只合并大于355的镜像文件和编辑日志。

CheckPoint时间设置

1)通常情况下,SecondaryNameNode每隔一小时执行一次。
[hdfs-default.xml]

<property>
  <name>dfs.namenode.checkpoint.period</name>
  <value>3600s</value>
</property>

2)一分钟检查一次操作次数,当操作次数达到1百万时,SecondaryNameNode执行一次。

<property>
  <name>dfs.namenode.checkpoint.txns</name>
  <value>1000000</value>
<description>操作动作次数</description>
</property>

<property>
  <name>dfs.namenode.checkpoint.check.period</name>
  <value>60s</value>
<description> 1分钟检查一次操作次数</description>
</property>

DataNode

DataNode工作机制

Hadoop3.x基础(2)- HDFS,大数据基础,大数据,hadoop

  • (1)一个数据块在DataNode上以文件形式存储在磁盘上,包括两个文件,一个是数据本身,一个是元数据包括数据块的长度,块数据的校验和,以及时间戳。
  • (2)DataNode启动后向NameNode注册,通过后,周期性(6小时)的向NameNode上报所有的块信息。
    DN向NN汇报当前解读信息的时间间隔,默认6小时
<property>
	<name>dfs.blockreport.intervalMsec</name>
	<value>21600000</value>
	<description>Determines block reporting interval in milliseconds.</description>
</property>

DN扫描自己节点块信息列表的时间,默认6小时

<property>
	<name>dfs.datanode.directoryscan.interval</name>
	<value>21600s</value>
	<description>Interval in seconds for Datanode to scan data directories and reconcile the difference between blocks in memory and on the disk.
	Support multiple time unit suffix(case insensitive), as described
	in dfs.heartbeat.interval.
	</description>
</property>
  • (3)心跳是每3秒一次,心跳返回结果带有NameNode给该DataNode的命令如复制块数据到另一台机器,或删除某个数据块。如果超过10分钟没有收到某个DataNode的心跳,则认为该节点不可用
  • (4)集群运行中可以安全加入和退出一些机器。

数据完整性

思考:如果电脑磁盘里面存储的数据是控制高铁信号灯的红灯信号(1)和绿灯信号(0),但是存储该数据的磁盘坏了,一直显示是绿灯,是否很危险?同理DataNode节点上的数据损坏了,却没有发现,是否也很危险,那么如何解决呢?
如下是DataNode节点保证数据完整性的方法。
(1)当DataNode读取Block的时候,它会计算CheckSum。
(2)如果计算后的CheckSum,与Block创建时值不一样,说明Block已经损坏。
(3)Client读取其他DataNode上的Block。
(4)常见的校验算法crc(32),md5(128),sha1(160)
(5)DataNode在其文件创建后周期验证CheckSum。
Hadoop3.x基础(2)- HDFS,大数据基础,大数据,hadoop

掉线时限参数设置

Hadoop3.x基础(2)- HDFS,大数据基础,大数据,hadoop
1、DataNode进程死亡或者网络故障造成DataNode无法与NameNode通信。
2、NameNode不会立即把该节点判定为死亡,要经过一段时间,这段时间暂称作超时时长。
3、HDFS默认的超时时长为10分钟+30秒。
4、如果定义超时时间为TimeOut,则超时时长的计算公式为:

TimeOut  = 2 * dfs.namenode.heartbeat.recheck-interval + 10 * dfs.heartbeat.interval。
而默认的dfs.namenode.heartbeat.recheck-interval 大小为5分钟,dfs.heartbeat.interval默认为3秒。

需要注意的是hdfs-site.xml 配置文件中的heartbeat.recheck.interval的单位为毫秒,dfs.heartbeat.interval的单位为秒文章来源地址https://www.toymoban.com/news/detail-835135.html

<property>
    <name>dfs.namenode.heartbeat.recheck-interval</name>
    <value>300000</value>
</property>

<property>
    <name>dfs.heartbeat.interval</name>
    <value>3</value>
</property>

到了这里,关于Hadoop3.x基础(2)- HDFS的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Hadoop3教程(二):HDFS的定义及概述

    随着实际生产环境中的数据越来越大,在一台服务器上无法存储下所有的数据,那么就要把数据分散到多台服务器的磁盘里存放。但是像这样做跨服务器的数据管理和维护是很难的,所以就迫切需要一种方式,来协调管理多台机器上的文件,这就是分布式文件管理系统。 HD

    2024年02月07日
    浏览(46)
  • Hadoop3教程(三):HDFS文件系统常用命令一览

    hdfs命令的完整形式: 其中subcommand有三种形式: admin commands client commands:如本节重点要讲的dfs daemon commands dfs(文件系统命令),这个是HDFS里,日常使用 最为频繁的一种命令 ,用来在HDFS的文件系统上运行各种文件系统命令,如查看文件、删除文件等。 基本语法: 这俩基本

    2024年02月06日
    浏览(69)
  • 【大数据基础】Hadoop3.1.3安装教程

    来源: https://dblab.xmu.edu.cn/blog/2441/ 前言:重装解决一切bug!事实上,问题中的绝大部分衍生问题都可以通过重装解决。 创建Hadoop用户 首先按 ctrl+alt+t 打开终端窗口,输入如下命令创建新用户 : 接着使用如下命令设置密码,可简单设置为 hadoop,按提示输入两次密码: 可为

    2024年02月09日
    浏览(66)
  • Hadoop3.x基础(1)

    来源:B站尚硅谷 大数据(Big Data):指 无法在一定时间范围内 用常规软件工具进行捕捉、管理和处理的数据集合,是 需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产 。 大数据主要解决 海量数据的采集、存储和分析

    2024年02月20日
    浏览(37)
  • 大数据:Hadoop HDFS,基础架构,去中心化,中心化模式,HDFS基础架构,虚拟机和云服务器部署HDFS

    2022找工作是学历、能力和运气的超强结合体,遇到寒冬,大厂不招人,可能很多算法学生都得去找开发,测开 测开的话,你就得学数据库,sql,oracle,尤其sql要学,当然,像很多金融企业、安全机构啥的,他们必须要用oracle数据库 这oracle比sql安全,强大多了,所以你需要学

    2024年02月17日
    浏览(64)
  • hadoop2的集群数据将副本存储在hadoop3

    在 Hadoop 集群中,HDFS 副本是分布式存储的,会存储在不同的节点上。因此,如果您的 HDFS 所在路径是在 Hadoop2 集群中,您可以在 Hadoop3 集群上添加新的节点,并向 Hadoop3 集群中添加这些新节点上的数据副本。 以下是一些常见的方法: 1.添加新节点 首先,在 Hadoop3 集群中添加

    2024年02月12日
    浏览(47)
  • 【大数据入门核心技术-Hadoop】(六)Hadoop3.2.1高可用集群搭建

    目录 一、Hadoop部署的三种方式 1、Standalone mode(独立模式) 2、Pseudo-Distributed mode(伪分布式模式) 3、Cluster mode(集群模式) 二、准备工作 1、先完成zk高可用搭建 2、/etc/hosts增加内容 3、各台服务器分别创建目录 4、关闭防火墙和禁用swap交换分区 5、三台机器间免密 6、安装

    2023年04月20日
    浏览(88)
  • 大数据之Hadoop3简单入门(一)(通俗易懂)

    目录 一. 大数据基础概论 1.1 何为大数据 2.1 大数据特点(4V) 2.1.1 Volume(大量) 2.2.2 Velocity(高速) 2.2.3 Varity(多样) 2.2.4 Value(低价值密度) 二. hadoop入门概述 2.1 什么是hadoop 2.1.1 概念 2.1.2 hadoop优势 2.1.3 hadoop不同版本区别 2.2  HDFS架构概述 2.3  Yarn架构概述 2.4 MapReduce架

    2024年02月02日
    浏览(44)
  • 大数据第一步-Mac安装Hadoop3

    前提是把jJDK8安装好,hadoop3.x最低需要jdk8。 然后打开共享把远程登陆打开,不打开说是后面会报错, 到终端输入命令:ssh localhost 生成新的keygen否则后面会报错 Permission denied 命令:ssh-keygen -t rsa -P \\\'\\\' -f ~/.ssh/id_rsa   注册,命令为如下: 安装hadoop,命令为我用的是bre

    2024年02月16日
    浏览(60)
  • hadoop基础:通过 Shell 命令访问 HDFS

    HDFS Shell 是由一系列类似 Linux Shell 的命令组成的。命令大致可分为 操作命令 、 管理命令 、 其他命令 三类 操作命令是以“ hdfs dfs ”开头的命令。通过这些命令,用户可以完成 HDFS 文件的 复制、删除和查找 等操作,Shell 命令的一般格式如下。 hdfs dfs [通用选项] 其中,hdfs

    2023年04月08日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包