【Day43】代码随想录之动态规划0-1背包_1049. 最后一块石头的重量 II_494. 目标和_ 474.一和零

这篇具有很好参考价值的文章主要介绍了【Day43】代码随想录之动态规划0-1背包_1049. 最后一块石头的重量 II_494. 目标和_ 474.一和零。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

动态规划理论基础

动规五部曲:
  1. 确定dp数组 下标及dp[i] 的含义。
  2. 递推公式:比如斐波那契数列 dp[i] = dp[i-1] + dp[i-2]。
  3. 初始化dp数组。
  4. 确定遍历顺序:从前到后or其他。
  5. 打印。
出现结果不正确:
  1. 打印dp日志和自己想的一样:递推公式、初始化或者遍历顺序出错。
  2. 打印dp日志和自己想的不一样:代码实现细节出现问题。

1049. 最后一块石头的重量 II

参考文档:代码随想录

题目:

有一堆石头,每块石头的重量都是正整数。
每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:
如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块石头。返回此石头最小的可能重量。如果没有石头剩下,就返回 0。

  • 示例:
    输入:[2,7,4,1,8,1]
    输出:1
    解释:
    组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
    组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
    组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
    组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。
  • 提示:
    1 <= stones.length <= 30
    1 <= stones[i] <= 1000

分析:
刚开始解题出现了误区,对stone从小到大的排列,偶数相邻元素之间抵消成新的值,奇数最大和最小抵消形成新的值后转为偶数的计算。一轮计算之后重复计算直到集合只剩一个元素。这个思路是重复的排列和相邻的抵消。这就不属于动态规划了,在动态规划中,将整个集合抽象为两个集合,集合1是抵消的集合,集合2是被抵消的集合。集合1-集合2就是最后的结果,要想(集合1-集合2)最小,就要使两个集合最接近,这就想到结合的和 sum/2,集合中是否存在子集和是最接近 sum/2 的,这个子集和就是所求的集合2。问题转为13.分割子集和的问题。

代码:文章来源地址https://www.toymoban.com/news/detail-835196.html

class Solution {
public:
    int lastStoneWeightII(vector<int>& stones) {
        int sum = 0, target = 0;
        for(int i = 0; i < stones.size(); i++){
            sum += stones[i];
        }
        target = sum/2;

        vector<int> dp(target+1, 0);

        for(int i = 0; i < stones.size(); i++){
            for(int j = target; j >= stones[i]; j--){
                dp[j] = max(dp[j], dp[j-stones[i]]+stones[i]);
            }
        }

        sum = sum - dp[target] - dp[target];
        return sum;
    }
};

494. 目标和

参考文档:代码随想录

分析:
正整数集合分成两个正整数的集合,left与right,一个是正数,一个是即将加负号的负数。有left-right=target; left + right = sum; 推出left = (target+sum)/2; 所有只要找到总集合中相加为left的方法个数就可以得到答案。问题转为集合划分为子集和,求实现子集和的方法数。所以是组合问题,递推公式为dp[i] = dp[i] + dp[i-nums[i]]; dp[i]表示实现i原来的方法数,dp[i-nums[i]]表示不加nums[i]的最多方法数,这个集合加入nums[i]就会得到 i。初始化时候的dp[0]应该设为1,这样不会导致之后的相加一直是0,可以理解为集合和为0有一种方法就是全部都为0。其余位置的初始化为0。

代码:

class Solution {
public:
    int findTargetSumWays(vector<int>& nums, int target) {
        //分析:两个正数集合left、right,left-right=target,left+right=sum,left=(sum+target)/2
        //接下来计算到left的集合的方法数,另一个就是right
        //dp[i]含义:集合和为i的方法个数
        //递推公式:dp[i] = dp[i] + dp[i-nums[i]];
        //初始化:dp[0] = 1,其余为0
        //遍历顺序:0-1背包
        int sum = 0, left = 0;
        for(int i = 0; i < nums.size(); i++){
            sum += nums[i];
        }
        if((sum+target)%2 == 1) return 0;
        if((sum + target) < 0) return 0;
        left = (sum+target) / 2;
        //初始化
        vector<int> dp(left+1, 0);
        dp[0] = 1;

        for(int i = 0; i < nums.size(); i++){
            for(int j = left; j >= nums[i]; j--){
                dp[j] = dp[j] + dp[j-nums[i]];
            }
        } 
        return dp[left];
    }
};

474.一和零

参考文档:代码随想录

分析:
dp[i][j]含义是i个0,j个1的集合中最大的字符串个数。

进而递推公式是dp[i][j] = max(dp[i][j], dp[i-zeroNum][j-oneNum]+1); 所以本题和0-1背包的滚动数组是类似的,只不过在是否放入背包的条件中不仅有0的限制还有1的限制,这表明在背包的循环体中处理的背包由一维上升到了二维。

遍历顺序上,必须先物品再背包,在物品的循环体中需要计算出该物品中0的个数和1的个数,在背包中,需要判断该不该把这个物品放入容量为i个0,j个1的背包中。在背包的遍历顺序中,应该和滚动数组的行为保持一致,需要倒序。

初始化中,有一点干扰到了我,我将0-1背包的二维初始化和这个背包的二维初始化联系起来,所以思考怎么初始化行、初始化列,但是这个联系就是错误的,dp[i][j]的含义是i个0,j个1的背包可以容纳的最多个数的字符串个数,所以dp数组中每个位置的初始化应该由之后背包的遍历中确定,刚开始的初始化和滚动数组的初始化一直,全部设为0。

代码:

class Solution {
public:
    int findMaxForm(vector<string>& strs, int m, int n) {
        //题目分析为有两个维度的背包,一个是m,另一个是n
        //dp[i][j]:有i个0,j个1的集合的最大长度。(!!!)
        //递推公式:dp[i][j] = max(dp[i][j], dp[i-zeroNum][j-oneNum]+1);
        //初始化:全0
        //遍历顺序:先物品再背包,因为先物品需要计算出二进制字符串中0和1的个数
        int zeroNum = 0, oneNum = 0;
        vector<vector<int>> dp(m+1, vector<int>(n+1,0));

        for(int i = 0; i < strs.size(); i++){
            zeroNum = 0, oneNum = 0;
            for(char c : strs[i]){
                if(c == '0') zeroNum++;
                else oneNum++;
            }
            for(int j = m; j >= zeroNum; j--){
                for(int k = n; k >= oneNum; k--){
                    dp[j][k] = max(dp[j][k], dp[j-zeroNum][k-oneNum]+1);
                }
            }
        }
        return dp[m][n];
    }
};

到了这里,关于【Day43】代码随想录之动态规划0-1背包_1049. 最后一块石头的重量 II_494. 目标和_ 474.一和零的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 二刷代码随想录——动态规划day40

    一个本硕双非的小菜鸡,备战24年秋招,计划二刷完卡子哥的刷题计划,加油! 二刷决定精刷了,于是参加了卡子哥的刷题班,训练营为期60天,我一定能坚持下去,迎来两个月后的脱变的,加油! 推荐一手卡子哥的刷题网站,感谢卡子哥。代码随想录 终于来到了守关boss。

    2024年03月11日
    浏览(57)
  • 代码随想录Day41:动态规划Part3

    讲解前: 毫无头绪 讲解后: 这道题的动态思路一开始很不容易想出来,虽然dp数组的定义如果知道是动态规划的话估摸着可以想出来那就是很straight forward dp定义:一维数组dp[i], i 代表整数的值,dp[i] 代表将整数 i 拆分的话可以获得的最大乘积 然后呢就是定义递归推导式了,

    2024年04月27日
    浏览(43)
  • 代码随想录第44天|动态规划:完全背包理论基础 518.零钱兑换II 377. 组合总和 Ⅳ

    代码随想录 (programmercarl.com) 动态规划之完全背包,装满背包有多少种方法?组合与排列有讲究!| LeetCode:518.零钱兑换II_哔哩哔哩_bilibili 完全背包和01背包问题唯一不同的地方就是,每种物品有无限件 。 完全背包中的物品可以添加多次,所以要从小到大遍历: 518. 零钱兑换

    2024年04月25日
    浏览(44)
  • 【代码随想录】Day 49 动态规划10 (买卖股票Ⅰ、Ⅱ)

    https://leetcode.cn/problems/best-time-to-buy-and-sell-stock/ dp[i]表示在第i天时,卖/不卖股票能获得的最大利润: 1、卖股票:dp[i] = prices[i] -minPrice(i天以前的最低价格) 2、不卖股票:dp[i] = dp[i-1](因为不卖股票,所以状态和前一天保持一致) ∴dp[i] = max(dp[i-1], prices[i] - minPrice); https

    2024年02月09日
    浏览(47)
  • 代码随想录 day38 第九章 动态规划part01

    ●  理论基础 ●  509. 斐波那契数 ●  70. 爬楼梯 ●  746. 使用最小花费爬楼梯 理论基础 解决动态规划必须要想清楚的点 dp数组以及下标的含义 递推公式 dp数组如何初始化 遍历顺序 打印数组 检查结果 关联 leetcode 509. 斐波那契数 思路 动规五部曲 dp数组以及下标的含义

    2024年04月17日
    浏览(50)
  • 【Day52】代码随想录之动态规划_打家劫舍

    动态规划理论基础 动规五部曲: 确定dp数组 下标及dp[i] 的含义。 递推公式:比如斐波那契数列 dp[i] = dp[i-1] + dp[i-2]。 初始化dp数组。 确定遍历顺序:从前到后or其他。 打印。 出现结果不正确: 打印dp日志和自己想的一样:递推公式、初始化或者遍历顺序出错。 打印dp日志和

    2024年02月22日
    浏览(53)
  • 【代码随想录】刷题笔记Day43

    刚过完非常愉快的元旦假期,唔想反工啊啊啊,先刷刷题找回学习的状态吧 dp[target] == target为目标,weight和value相同的01背包问题,用一维遍历 dp[j]为容量为j的背包所能装的最大价值 dp[j] = max(dp[j], dp[j - num[i]] + nums[i]) 关键在于把两两相减问题转化为两堆近似相减,和上一题就

    2024年02月03日
    浏览(40)
  • 【随想录学习】——第十章 动态规划(0-1背包+完全背包)

    动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。 所以动态规划中每一个状态一定是由上一个状态推导出来的, 这一点就区分于贪心 ,贪心没有状态推导,而是从局部直接选最优的, dp数组表示斐波那契数列,dp[i]表示

    2024年01月19日
    浏览(63)
  • 代码随想录day42(背包)

    2024年02月13日
    浏览(36)
  • 代码随想录 day44 完全背包

    class Solution { public:     int change(int amount, vectorint coins) {         vector int dp(amount+1,0);         dp[0]=1;         for(int i=0;icoins.size();i++){             for(int j=coins[i];j=amount;j++){                 dp[j]+=dp[j-coins[i]];             }         }  

    2024年02月15日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包