Bert基础(三)--位置编码

这篇具有很好参考价值的文章主要介绍了Bert基础(三)--位置编码。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

背景

还是以I am good(我很好)为例。

在RNN模型中,句子是逐字送入学习网络的。换言之,首先把I作为输入,接下来是am,以此类推。通过逐字地接受输入,学习网络就能完全理解整个句子。然而,Transformer网络并不遵循递归循环的模式。因此,我们不是逐字地输入句子,而是将句子中的所有词并行地输入到神经网络中。并行输入有助于缩短训练时间,同时有利于学习长期依赖。

不过,并行地将词送入Transformer,却不保留词序,它将如何理解句子的意思呢?要理解一个句子,词序(词在句子中的位置)不是很重要吗?

当然,Transformer也需要一些关于词序的信息,以便更好地理解句子。但这将如何做到呢?现在,让我们来解答这个问题。

位置编码

对于给定的句子I am good,我们首先计算每个单词在句子中的嵌入值。嵌入维度可以表示为 d m o d e l d_{model} dmodel。比如将嵌入维度 d m o d e l d_{model} dmodel设为4,那么输入矩阵的维度将是[句子长度×嵌入维度],也就是[3 × 4]。

同样,用输入矩阵X(嵌入矩阵)表示输入句I am good。假设输入矩阵X如图所示。
Bert基础(三)--位置编码,Deep Learing & pytorch,NLP,bert,人工智能,深度学习
如果把输入矩阵X直接传给Transformer,那么模型是无法理解词序的。因此,需要添加一些表明词序(词的位置)的信息,以便神经网络能够理解句子的含义。所以,我们不能将输入矩阵直接传给Transformer。这里引入了一种叫作位置编码的技术,以达到上述目的。顾名思义,位置编码是指词在句子中的位置(词序)的编码。

位置编码矩阵P的维度与输入矩阵X的维度相同。在将输入矩阵直接传给Transformer之前,我们将使其包含位置编码。我们只需将位置编码矩阵P添加到输入矩阵X中,再将其作为输入送入神经网络,如图所示。这样一来,输入矩阵不仅有词的嵌入值,还有词在句子中的位置信息。

Bert基础(三)--位置编码,Deep Learing & pytorch,NLP,bert,人工智能,深度学习
位置编码矩阵究竟是如何计算的呢?如下所示,Transformer论文“Attention Is All You Need”的作者使用了正弦函数来计算位置编码:

P ( p o s , 2 i ) = s i n ( p o s 1000 0 2 i / d m o d e l ) P(pos,2i) = sin(\frac{pos}{10000^{2i/d_{model}}}) P(pos,2i)=sin(100002i/dmodelpos)

P ( p o s , 2 i + 1 ) = c o s ( p o s 1000 0 2 i / d m o d e l ) P(pos,2i+1) = cos(\frac{pos}{10000^{2i/d_{model}}}) P(pos,2i+1)=cos(100002i/dmodelpos)

在上面的等式中,pos表示该词在句子中的位置, i i i表示在输入矩阵中的位置。下面通过一个例子来理解以上等式,如图所示。
Bert基础(三)--位置编码,Deep Learing & pytorch,NLP,bert,人工智能,深度学习
可以看到,在位置编码中,当 i i i是偶数时,使用正弦函数;当 i i i是奇数时,则使用余弦函数。通过简化矩阵中的公式,可以得出下图所示的结果。
Bert基础(三)--位置编码,Deep Learing & pytorch,NLP,bert,人工智能,深度学习
我们知道I位于句子的第0位,am在第1位,good在第2位。代入pos值,我们得到结果。

Bert基础(三)--位置编码,Deep Learing & pytorch,NLP,bert,人工智能,深度学习
最终的位置编码矩阵P如图所示。
Bert基础(三)--位置编码,Deep Learing & pytorch,NLP,bert,人工智能,深度学习
只需将输入矩阵X与计算得到的位置编码矩阵P进行逐元素相加,并将得出的结果作为输入矩阵送入编码器中。

让我们回顾一下编码器架构。下图是一个编码器模块,从中我们可以看到,在将输入矩阵送入编码器之前,首先要将位置编码加入输入矩阵中,再将其作为输入送入编码器。
Bert基础(三)--位置编码,Deep Learing & pytorch,NLP,bert,人工智能,深度学习

其他补充

前馈网络层

前馈网络层在编码器模块中的位置如下图所示。
Bert基础(三)--位置编码,Deep Learing & pytorch,NLP,bert,人工智能,深度学习
前馈网络由两个有ReLU激活函数的全连接层组成。前馈网络的参数在句子的不同位置上是相同的,但在不同的编码器模块上是不同的。

叠加和归一组件

在编码器中还有一个重要的组成部分,即叠加和归一组件。它同时连接一个子层的输入和输出,如下图所示(虚线部分)

  • 同时连接多头注意力层的输入和输出。
  • 同时连接前馈网络层的输入和输出。

Bert基础(三)--位置编码,Deep Learing & pytorch,NLP,bert,人工智能,深度学习
叠加和归一组件实际上包含一个残差连接与层的归一化。层的归一化可以防止每层的值剧烈变化,从而提高了模型的训练速度。

至此,我们已经了解了编码器的所有部分。

编码器总览

下图显示了叠加的两个编码器,但只有编码器1被展开,以便查看细节。
Bert基础(三)--位置编码,Deep Learing & pytorch,NLP,bert,人工智能,深度学习
通过上图,我们可以总结出以下几点。
(1) 将输入转换为嵌入矩阵(输入矩阵),并将位置编码加入其中,再将结果作为输入传入底层的编码器(编码器1)。
(2) 编码器1接受输入并将其送入多头注意力层,该子层运算后输出注意力矩阵。
(3) 将注意力矩阵输入到下一个子层,即前馈网络层。前馈网络层将注意力矩阵作为输入,并计算出特征值作为输出。
(4) 接下来,把从编码器1中得到的输出作为输入,传入下一个编码器(编码器2)。
(5) 编码器2进行同样的处理,再将给定输入句子的特征值作为输出。

这样可以将N个编码器一个接一个地叠加起来。从最后一个编码器(顶层的编码器)得到的输出将是给定输入句子的特征值。让我们把从最后一个编码器(在本例中是编码器2)得到的特征值表示为R。

我们把R作为输入传给解码器。解码器将基于这个输入生成目标句。现在,我们了解了Transformer的编码器部分。后续将详细分析解码器的工作原理。文章来源地址https://www.toymoban.com/news/detail-835958.html

到了这里,关于Bert基础(三)--位置编码的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • NLP——ELMO;BERT;Transformers

    ELMo(Embeddings from Language Models)是一个在2018年由Allen AI研究所开发的新型深度语义词嵌入(word embedding)。 ELMo词嵌入是基于上下文的,这意味着对于任何给定的词,它的表示都会根据它出现的上下文而变化。 这是一个重要的进步, 因为传统的词嵌入,如Word2Vec或GloVe,为每个

    2024年02月09日
    浏览(42)
  • NLP之Bert实现文本分类

    首先,概述一下代码的主要目的和流程。 主要目的 : 此代码的主要目的是使用BERT模型进行序列分类。具体来说,它似乎是在处理某种情感分析任务,因为代码中读取了标签和文本,并试图用BERT模型来进行分类(假设为正面或负面情感,因为 num_labels=2 )。 整体流程 : 导入

    2024年02月05日
    浏览(38)
  • NLP之Bert介绍和简单示例

    官网访问:https://huggingface.co/ 注意力模型,可以参考知乎博客:https://zhuanlan.zhihu.com/p/37601161 即适合于图形和图像,也适合于自然语言处理。可以帮助我们快速识别重点。 例如在识别一张图片的时候,我们并不知道哪个地方是重点。在开始读一本书的时候,不知道哪个章节是

    2024年02月05日
    浏览(34)
  • 带你熟悉NLP预训练模型:BERT

    本文分享自华为云社区《【昇思技术公开课笔记-大模型】Bert理论知识》,作者: JeffDing。 语言模型演变经历的几个阶段 word2vec/Glove将离散的文本数据转换为固定长度的静态词向量,后根据下游任务训练不同的语言模型 ELMo预训练模型将文本数据结合上下文信息,转换为动态

    2024年01月22日
    浏览(66)
  • 【自然语言处理NLP】Bert预训练模型、Bert上搭建CNN、LSTM模型的输入、输出详解

    Bert模型的输入 context 张量需要满足以下要求: 张量形状: context 应为二维张量,形状为 [batch_size, sequence_length] ,其中 batch_size 是输入样本的批量大小, sequence_length 是输入序列的长度。 数据类型: context 的数据类型应为整数类型,如 torch.LongTensor 。 值范围: context 中的值应

    2024年02月11日
    浏览(36)
  • 【NLP】1、BERT | 双向 transformer 预训练语言模型

    论文:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 出处:Google 在 BERT 之前的语言模型如 GPT 都是单向的模型,但 BERT 认为虽然单向(从左到右预测)预测任务符合语言模型的建模过程,但对一些语言理解任务不太友好,因为要理解一句话说的是什么意思的话

    2024年02月12日
    浏览(38)
  • 【Bert101】最先进的 NLP 模型解释【01/4】

            BERT是来自 【Bidirectional Encoder Representations from Transformers】 变压器的双向编码器表示的缩写,是用于自然语言处理的机器学习(ML)模型。它由Google AI Language的研究人员于2018年开发,可作为瑞士军刀解决方案,用于11 +最常见的语言任务,例如情感分析和命名实体识

    2024年02月13日
    浏览(33)
  • NLP(六十七)BERT模型训练后动态量化(PTDQ)

      本文将会介绍BERT模型训练后动态量化(Post Training Dynamic Quantization,PTDQ)。 量化   在深度学习中,量化(Quantization)指的是使用更少的bit来存储原本以浮点数存储的tensor,以及使用更少的bit来完成原本以浮点数完成的计算。这么做的好处主要有如下几点: 更少的模型

    2024年02月09日
    浏览(38)
  • NLP之Bert多分类实现案例(数据获取与处理)

    一篇文章可以同时属于多个类别,而我们过去的多分类,虽然结果是多个类别,但是每个样本只能属于1个类别。 针对下图,以前,对于输出层来说,输出层有 5 个神经元。 我们认为是5个类别,通过softmax会生成5个类别的概率,我们取概率最大的那个,作为预测的结果。 但现

    2024年02月05日
    浏览(35)
  • 快速上手Pytorch实现BERT,以及BERT后接CNN/LSTM

    本项目采用HuggingFace提供的工具实现BERT模型案例,并在BERT后接CNN、LSTM等 HuggingFace官网 一、实现BERT(后接线性层) 1.引用案例源码: 程序会自行下载模型和配置文件,也可自行在官网上手动下载 模型返回的参数 2. 自定义类调用数据集 squeeze(0)的作用: 举个栗子 input_ids: te

    2024年02月05日
    浏览(34)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包