CP03大语言模型ChatGLM3-6B特性代码解读(1)

这篇具有很好参考价值的文章主要介绍了CP03大语言模型ChatGLM3-6B特性代码解读(1)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

CP03大语言模型ChatGLM3-6B特性代码解读(1)

总述

对话模式、工具模式、代码解释器模式例程阅读理解。
ChatGLM3-6B已经进行了中文场景的训练,可以直接运用于中文场景。本次学习的示例,提供了三种模式。包括:

  • Chat: 对话模式,在此模式下可以与模型进行对话;
  • Tool: 工具模式,模型除了对话外,还可以通过工具进行其他操作;
  • Code Interpreter: 代码解释器模式,模型可以在一个 Jupyter 环境中执行代码并获取结果,以完成复杂任务。

对话模式下,可以直接修改 top_p, temperature, System Prompt 等参数来调整模型的行为;工具模式下,可以通过在 tool_registry.py 中注册新的工具来增强模型的能力;代码解释器模式下,模型能够执行更为复杂的任务,例如绘制图表、执行符号运算等等。

本示例代码包括以下7个:

conversation.py
demo_ci.py
main.py
client.py
demo_chat.py
demo_tool.py
tool_registry.py

受篇幅影响,本文先解读client.py和conversation.py。

提示词及UI交互基础conversation.py

在conversation.py中处理streamlit相关以及prompt提示词处理相关的内容。使之符合本次demo的逻辑和结构。

提示词相关角色Role的处理

在之前的文章中介绍过,LLM的提示词角色一般包括system、user、assistant、obervation。以下代码是例程中的条件处理:

# Get the message block for the given role
    def get_message(self):
        # Compare by value here, because the enum object in the session state
        # is not the same as the enum cases here, due to streamlit's rerunning
        # behavior.
        match self.value:
            case Role.SYSTEM.value:
                return
            case Role.USER.value:
                return st.chat_message(name="user", avatar="user")
            case Role.ASSISTANT.value:
                return st.chat_message(name="assistant", avatar="assistant")
            case Role.TOOL.value:
                return st.chat_message(name="tool", avatar="assistant")
            case Role.INTERPRETER.value:
                return st.chat_message(name="interpreter", avatar="assistant")
            case Role.OBSERVATION.value:
                return st.chat_message(name="observation", avatar="user")
            case _:
                st.error(f'Unexpected role: {self}')

对话内容字符里的提示词处理

对包含system、user、assistant、obervation等字符的处理:

def preprocess_text(
    system: str | None,
    tools: list[dict] | None,
    history: list[Conversation],
) -> str:
    if tools:
        tools = json.dumps(tools, indent=4, ensure_ascii=False)

    prompt = f"{Role.SYSTEM}\n"
    prompt += system if not tools else TOOL_PROMPT
    if tools:
        tools = json.loads(tools)
        prompt += json.dumps(tools, ensure_ascii=False)
    for conversation in history:
        prompt += f'{conversation}'
    prompt += f'{Role.ASSISTANT}\n'
    return prompt

对话基础client.py

在client.py中import transformers相关接口,包括AutoModel, AutoTokenizer, AutoConfig,LogitsProcessor,LogitsProcessorList等。

模型路径等参数设置

MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/chatglm3-6b')
PT_PATH = os.environ.get('PT_PATH', None)
PRE_SEQ_LEN = int(os.environ.get("PRE_SEQ_LEN", 128))
TOKENIZER_PATH = os.environ.get("TOKENIZER_PATH", MODEL_PATH)

创建processor,并定义EOS token

LogitsProcessor的作用就是在生成过程中修改score,改变模型输出的概率分布的工具。

if logits_processor is None:
logits_processor = LogitsProcessorList()
logits_processor.append(InvalidScoreLogitsProcessor())
eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
tokenizer.get_command("<|observation|>")]

定义stream_chat对话函数

此方法其实就是ChatGLM3-6B的model.stream_chat实现。不太理解为什么挪到一个demo里使用。参考:

ChatGLM3/THUDM/chatglm3-6b/modeling_chatglm.py

def stream_chat(
        self, tokenizer, query: str,
        history: list[tuple[str, str]] = None,
        role: str = "user",
        past_key_values=None,
        max_new_tokens: int = 256,
        do_sample=True, top_p=0.8,
        temperature=0.8,
        repetition_penalty=1.0,
        length_penalty=1.0, num_beams=1,
        logits_processor=None,
        return_past_key_values=False,
        **kwargs
):

在该方法中,调用的方法不是之前的model.chat、model.streamchat,而是tokenizer.build_chat_input等更底层的方法:
处理输入:

    if past_key_values is None:
        inputs = tokenizer.build_chat_input(query, history=history, role=role)
    else:
        inputs = tokenizer.build_chat_input(query, role=role)

处理输出:

    for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
                                        eos_token_id=eos_token_id, return_past_key_values=return_past_key_values,
                                        **gen_kwargs):
        if return_past_key_values:
            outputs, past_key_values = outputs
        outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
        response = tokenizer.decode(outputs)
        if response and response[-1] != "�":
            new_history = history
            if return_past_key_values:
                yield response, new_history, past_key_values
            else:
                yield response, new_history

相关参数备查:

inputs (torch.Tensor of varying shape depending on the modality,optional):
生成使用的序列或模型输入到编码器。如果None,方法将它初始化为bos_token_id和一个大小为1的批次大小。对于只包含解码器的模型,inputs应该以input_ids的形式输入。对于编码器-解码器模型,inputs可以代表input_ids,input_values,input_features或pixel_values的任何一种。
generation_config (~generation.GenerationConfig,optional):
用于生成的基参数化。如果generation_config不可用,则默认值将使用模型配置中的默认值。如果提供的参数与generation_config中的参数匹配,则将使用这些参数。如果不提供generation_config,则将使用以下加载顺序:1)从generation_config.json模型文件中获取;2)从模型配置中获取。请注意,未指定的参数将继承~generation.GenerationConfig的默认值,其文档应该用于参数化生成。
logits_processor (LogitsProcessorList,optional):
用于补充默认logits处理器的自定义logits处理器。如果提供的logits处理器已经使用了相同的参数或生成配置,则会引发错误。此功能旨在为高级用户提供便利。
stopping_criteria (StoppingCriteriaList,optional):
用于补充默认停止准则的自定义停止准则。如果提供的停止准则已经使用了相同的参数或生成配置,则会引发错误。此功能旨在为高级用户提供便利。
prefix_allowed_tokens_fn (Callable[[int, torch.Tensor], List[int]],optional):
如果提供,则此函数仅约束搜索到的令牌。如果未提供,则不应用任何约束。此函数需要两个参数:批次IDbatch_id和input_ids。它应该返回一个条件为batch_id和以前生成的令牌inputs_ids的令牌列表。此功能可用于约束带前缀的生成,如自回归实体检索中所述。
synced_gpus (bool,*optional,默认为False):
是否继续运行循环直到最大长度(需要ZeRO阶段3)
kwargs:
随机参数化generate_config和/或特定于模型的

补充知识,辅助理解上述stream_chat实现

导入模型并合并:


from transformers import AutoTokenizer, AutoModel
from peft import LoraConfig, PeftModel, get_peft_model

tokenizer = AutoTokenizer.from_pretrained("./chatglm3-6b-base", trust_remote_code=True)
model = AutoModel.from_pretrained("./chatglm3-6b-base", trust_remote_code=True).half().cuda()

peft_model_id = './trained_model/checkpoint-35'
model = PeftModel.from_pretrained(model, peft_model_id)

LLM的文本续写步骤:

history = []
query = "你是谁"
role = "user"
inputs = tokenizer.build_chat_input(query, history=history, role=role)
inputs = inputs.to('cuda')
eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
                        tokenizer.get_command("<|observation|>")]
gen_kwargs = {"max_length": 500, "num_beams": 1, "do_sample": True, "top_p": 0.8,
                      "temperature": 0.8}
outputs = model.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
response = tokenizer.decode(outputs)
history = []
history.append({"role": "user", "content": "你是谁"})
response, history = model.process_response(response, history)
print(response)

继续问答:文章来源地址https://www.toymoban.com/news/detail-835981.html

query = "你能干什么"
role = "user"
inputs = tokenizer.build_chat_input(query, history=history, role=role)
inputs = inputs.to('cuda')
outputs = model.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
response = tokenizer.decode(outputs)
history.append({"role": role, "content": query})
response, history = model.process_response(response, history)
print(response)

到了这里,关于CP03大语言模型ChatGLM3-6B特性代码解读(1)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 关于大模型ChatGLM3-6B在CPU下运行

            最近在调研市场上语言大模型,为公司的产品上虚拟人的推出做准备。各厂提供语言模型都很丰富,使用上也很方便,有API接口可以调用。但唯一的不足,对于提供给百万用户使用的产品,相比价格都比较贵。所以对ChatGLM3-6B的使用做了深入了解,特别只有CPU没有

    2024年02月04日
    浏览(50)
  • mac M系列芯片安装chatGLM3-6b模型

    下载miniconda,并安装 创建名为chatglm3的虚拟环境,python版本为3.10.2 激活环境(后续要在这个环境安装pytorch及依赖包) 1 下载地址,git地址:https://github.com/THUDM/ChatGLM3 2 进入代码中,安装依赖包 推荐使用方式3下载,可以下载任意开源大模型,且速度飞快,没有墙限制 https:/

    2024年02月02日
    浏览(67)
  • 开源模型应用落地-chatglm3-6b-批量推理-入门篇(四)

         刚开始接触AI时,您可能会感到困惑,因为面对众多开源模型的选择,不知道应该选择哪个模型,也不知道如何调用最基本的模型。但是不用担心,我将陪伴您一起逐步入门,解决这些问题。      在信息时代,我们可以轻松地通过互联网获取大量的理论知识和概念。然

    2024年04月17日
    浏览(42)
  • 开源模型应用落地-chatglm3-6b-gradio-入门篇(七)

        早前的文章,我们都是通过输入命令的方式来使用Chatglm3-6b模型。现在,我们可以通过使用gradio,通过一个界面与模型进行交互。这样做可以减少重复加载模型和修改代码的麻烦, 让我们更方便地体验模型的效果。     是一个用于构建交互式界面的Python库。它使得在Py

    2024年04月26日
    浏览(45)
  • 【自然语言处理】【大模型】ChatGLM-6B模型结构代码解析(单机版)

    ChatGLM-6B模型结构代码解析(单机版) ​ 本文介绍ChatGLM-6B的模型结构,代码来自https://huggingface.co/THUDM/chatglm-6b/blob/main/modeling_chatglm.py。 相关博客 【自然语言处理】【长文本处理】RMT:能处理长度超过一百万token的Transformer 【自然语言处理】【大模型】MPT模型结构源码解析(单机

    2024年02月06日
    浏览(53)
  • 从零开始部署ubuntu+Anaconda3+langchain-chatchat+chatglm3-6b大模型,本地知识库(二)

    接上文:从零开始部署ubuntu+Anaconda3+langchain-chatchat+chatglm3-6b大模型,本地知识库 Langchain-chatchat 0.2.10 推荐使用python3.11.7,通过下面命令进行python环境创建。 如下图 安装完毕后,通过以下命令激活python虚拟环境 如下图,shell命令行前面会出现(langchain)这个虚拟环境名。 转到

    2024年03月21日
    浏览(59)
  • 从零开始部署ubuntu+Anaconda3+langchain-chatchat+chatglm3-6b大模型,本地知识库(完结篇)

    相关文章: 从零开始部署ubuntu+Anaconda3+langchain-chatchat+chatglm3-6b大模型,本地知识库(一) https://blog.csdn.net/hya168/article/details/131460230 从零开始部署ubuntu+Anaconda3+langchain-chatchat+chatglm3-6b大模型,本地知识库(二) https://blog.csdn.net/hya168/article/details/135870440 生成默认配置文件 此命令

    2024年02月20日
    浏览(67)
  • 【本地大模型部署与微调】ChatGLM3-6b、m3e、one-api、Fastgpt、LLaMA-Factory

    本文档详细介绍了使用ChatGLM3-6b大模型、m3e向量模型、one-api接口管理以及Fastgpt的知识库,成功的在本地搭建了一个大模型。此外,还利用LLaMA-Factory进行了大模型的微调。 1.ChatGLM3-6b 2.m3e 3.One-API 4.Fastgpt 5.LLaMA-Factory 1.1创建腾讯云服务器 注意: ChatGLM3-6b的大模型40多个G,购买腾讯

    2024年03月22日
    浏览(45)
  • ChatGLM3-6B的本地api调用

    1.运行openai_api_demo路径下的openai_api.py 启动后界面: 注意:本地api调到的前提是——本地部署了ChatGLM3-6B,本地部署的教程可参考: 20分钟部署ChatGLM3-6B 部署了若CUDA可用,默认会以CUDA方式运行,占用显存约5.9G;若CUDA不可用,则会以内存方式进行加载,官方称CPU调用需要32G内存

    2024年01月21日
    浏览(55)
  • 使用vLLM和ChatGLM3-6b批量推理

    当数据量大的时候,比如百万级别,使用 ChatGLM3-6b 推理的速度是很慢的。发现使用 vLLM 和 ChatGLM3-6b 批量推理极大的提高了推理效率。本文主要通过一个简单的例子进行实践。 除了 Python(本文使用 3.11)、CUDA(本文使用 11.8)外,还要安装 vllm、pytorch、xformers 等库,特别注意

    2024年02月04日
    浏览(58)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包