R cox回归 ggDCA报错

这篇具有很好参考价值的文章主要介绍了R cox回归 ggDCA报错。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

临床预测模型的决策曲线分析(DCA):基于ggDCA包
决策曲线分析法(decision curve analysis,DCA)是一种评估临床预测模型、诊断试验和分子标记物的简单方法。 我们在传统的诊断试验指标如:敏感性,特异性和ROC曲线下面积仅测量预测模型的诊断准确性,未能考虑特定模型的临床效用,而DCA的优势在于它将患者或决策者的偏好整合到分析中。这种理念的提出满足了临床决策的实际需要,在临床分析中的应用日益广泛。

前 言

本文介绍使用ggDCA包绘制多因素Cox回归模型的决策曲线分析(Decision curve analysis,DCA)。

ggDCA是目前能同时绘制Cox回归模型、logistic回归模型及广义线性模型的DCA曲线且其图形能用ggplot2美化。同时,该包还能计算DCA的曲线下面积、净获益及阈值概率的范围,如果把这些加入到文章中相信能增色不少!

1. 预测模型评估小结

2. ggDCA包的安装

3. Cox回归模型的DCA

4. 单个Cox模型多个时间点的DCA

5. 多个Cox回归模型的DCA比较

6. 多个模型在多个时间的DCA比较

7. DCA的曲线下面积(AUDC)

8. 其他回归模型的DCA

一、模型评估与比较小结

举例:某列线图(AUC/C-inde=0.8)预测某患者5年复发风险为70%。

1. 区分度 (Discrimination)

使用ROC曲线的曲线下面积(AUC)和C-index评估。

AUC/C-index=0.8,列线图对此结果的区分能力为80%,即有80%的把握确定复发率为70%。预测模型 | 6. 模型评估:ROC曲线-基于多因素Cox回归

2. 校准度 (Calibration)

使用校准图评估。

校准图用于解释列线图预测的70%复发率与实际复发率的接近程度,即准确性评估。详见:预测模型 | 5. 模型评估:校准曲线

3. 临床实用性

(Clinical usefulness)

使用决策曲线分析(DCA)评估。

多因素Cox回归的DCA曲线

#载入R包
ibrary(rms)
library(ggDCA)
library(survival)  

#清理环境
rm(list = ls()) 

#2.载入数据,status=0为复发
aa<- read.csv('决策分析曲线.CSV')

#使用cph()函数时运行
#即报错:adjustment values not defined here or with datadist.....时
bb<-datadist(aa)
options(datadist='bb')
数据点击:https://mp.weixin.qq.com/s/VO3GiBZcL_kAoHrr6_dPAw获取

1、构建多因素Cox回归模型

数据中status,0为感兴趣事件,因此status==0

model1<-coxph(Surv(time,status==0)~AGE+N+ER+LVI+Grade+RT,
                data=aa)

2、决策曲线分析 DCA

fig1<-dca(model1,
           new.data = NULL,
           times=60)
  1. 不写times=60,默认为times="median";
  2. 想看多个时间点DCA,times=c(36,48,60);
  3. 想看外部验证数据DCA曲线,载入外部数据后,new.data = NULLNULL变为外部数据名字。

3、DCA曲线绘制和美化

ggplot(dca1,       
       model.names="模型1",
       linetype =F, #线型
       lwd = 1.2)   #线粗

R cox回归 ggDCA报错,统计分析与作图,r语言

2.png


4. 美化

library(ggprism)
ggplot(dca1,linetype =F,lwd = 1.2)+
  #使用直线坐标系    
  theme_classic()+  
  #使用prism主题
  theme_prism(base_size =17)+
  #图例放在上方
  theme(legend.position="top")+
  #x轴范围并加入小刻度
  scale_x_continuous(
    limits = c(0, 1),
    guide = "prism_minor") +
  #y轴范围并加入小刻度
  scale_y_continuous(
    limits = c(-0.01, 0.2),
    guide = "prism_minor")+
  #颜色
  scale_colour_prism(         
    palette = "candy_bright",
    name = "Cylinders",
    label = c("模型1", "ALL", "None"))+
  #图形标题
  labs(title = "5年DCA基于ggDCA包")

R cox回归 ggDCA报错,统计分析与作图,r语言

3.png


更多细节点击查看原文:https://t.1yb.co/nAm1

四、单个模型多个时间点的DCA

只需修改一下times=c(36,48,60)和图例名称即可

#第1步建模同上
#第2步同上,只需改时间即可
dca1<-dca(model1,
           new.data = NULL,
           times=c(36,48,60))
#第3步改标签
ggplot(dca1,
       linetype =F,
       lwd = 1.2)+
  theme_classic()+  
  theme_prism(base_size =15)+
  theme(legend.position=c(0.7,0.7))+
  scale_x_continuous(
    limits = c(0, 1),
    guide = "prism_minor") +
  scale_y_continuous(
    limits = c(-0.01, 0.15),
    guide = "prism_minor")+
  scale_colour_prism(
    palette = "candy_bright",
    name = "Cylinders",
    label = c("3年DCA","4年DCA","5年DCA", 
              "ALL-3年", "ALL-4年","ALL-5年",
              "None"))+
  labs(title = "3-5年DCA")

R cox回归 ggDCA报错,统计分析与作图,r语言

五、多个模型DCA比较

#再建两个模型
model2 <- coxph(Surv(time,status==0)~AGE+N+ER+PR+Grade,data=aa)
model3 <- coxph(Surv(time,status==0)~AGE+N+ER+LVI,data=aa)
#三模型DCA分析
#只需指明模型名字和时间即可,跟1个模型一样其实
dca2<- dca(model1,model2,model3,
            times=60)
#绘图,跟单模型一样的代码
ggplot(dca2,
       linetype =F,
       lwd = 1.2)+theme_classic()+  
  theme_prism(base_size =17)+
  theme(legend.position=c(0.8,0.6))+
  scale_x_continuous(
    limits = c(0, 1),
    guide = "prism_minor"
  ) +
  scale_y_continuous(
    limits = c(-0.01, 0.15),
    guide = "prism_minor"
  )+
  scale_colour_prism(
    palette = "candy_bright",
    name = "Cylinders",
    label = c("模型1", "模型2", "模型3","ALL","None")
  )+labs(title = "三模型DCA比较")

R cox回归 ggDCA报错,统计分析与作图,r语言

六、多模型多时间点DCA比较

#只需修改一下时间和标题
dca2<- dca(model1,model2,model3,times=c(36,48,60))

ggplot(dca2,
       linetype =F,
       lwd = 1.2)+theme_classic()+  
  theme_prism(base_size =17)+
  theme(legend.position=c(0.9,0.6))+
  scale_x_continuous(
    limits = c(0, 1),
    guide = "prism_minor"
  ) +
  scale_y_continuous(
    limits = c(-0.01, 0.15),
    guide = "prism_minor"
  )+
  scale_colour_prism(
    palette = "candy_bright",
    name = "Cylinders",
    label = c("模型1", "模型2", "模型3","ALL","None")
  )+labs(title = "三个模型3-5年DCA比较")

R cox回归 ggDCA报错,统计分析与作图,r语言

七、曲线下面积及净获益范围

类似ROC曲线的曲线下面积,DCA曲线也有曲线下面积: Area under Decision Curve (AUDC)。

代码非常简单:AUDC(x)x=dca()函数的名称。

净获益范围:rFP.p100(x)

model1<-cph(Surv(time,status==0)~AGE+N+ER+LVI+Grade+RT,
                data=aa)
dca1<-dca(model1,times=60)
AUDC(dca1)

#运行结果
#   model1        All       None 
#0.06035219 0.01139759 0.00000000
rFP.p100(dca1)

#也可以直接输入dca1
dca1

R cox回归 ggDCA报错,统计分析与作图,r语言

基于这个数据框,我们可以比较各个模型在各个时间点的阈值概率范围,最大最小净获益。

在我读过的文章里,这些数据很少被报道。

这项结果也是ggDCA包的一大特色。

这些数据将使我们的文章更具亮点和说服力。

八、其他回归模型的DCA曲线

ggDCA包可以绘制coxph()和cph()Cox回归模型, lrm()逻辑回归模型以及glm()广义线型模型的DCA曲线。

其原理与Cox回归模型一样,建模---dca()分析---绘图

只不过,其他模型不需要加入时间变量。

这里使用逻辑回归模型简单举例

bb<-datadist(aa)
options(datadist='bb')
#建模
m1<- lrm(status~AGE+N+LVI+Grade,data = aa)
m2<- lrm(status~AGE,data = aa)
#dca分析
d<-dca(m1,m2 )
#绘图
ggplot(d)+
  theme_classic()+  
  theme_prism(base_size =17)+
  theme(legend.position=c(0.25,0.3))+
  scale_x_continuous(
    limits = c(0.2, 1),
    guide = "prism_minor"
  ) +
  scale_y_continuous(
    limits = c(-0.05, 0.8),
    guide = "prism_minor"
  )+
  scale_colour_prism(
    palette = "candy_bright",
    name = "Cylinders",
    label = c("lrm模型1", "lrm模型2","ALL","None")

小结

基于ggDCA包的可以为我们绘制各种类型的DCA曲线。在文章中可使用的结果可以有:

1、基于DCA分析,模型1比模型2有着更好的临床实用性,在相同的阈值概率下触发医疗干预时,使用模型1作为指导可以使患者有更多的净获益。----DCA图形看到的 ;

2、此外,模型1比模型2有着更广的阈值概率范围+结果----基于dca(x)结果;

3、不同时间点的模型比较可以看模型的在不同时间其临床实用性的变化情况。

在读过的文章中,常常只汇报了第1条结果,但是,现在我们可以通过ggDCA包挖掘更多的结果以此增加一下文章的亮点了。

ggDCA包参考手册:

https://cran.r-project.org/web/packages/ggDCA/index.html

https://mp.weixin.qq.com/s?__biz=Mzg2MjU2NDQwMg==&mid=100010922&idx=1&sn=eae80cc7ab9e3fd2d66864609520921b&chksm=4e0752f77970dbe170cf969ab9baaf1dbbca8953ff4c2502e54595db5cffec4dc17f76267226#rd

错误1 

Error in model.frame.default(formula = Surv(time, event) ~ data + new_model_by_liang_guo,  :   参数'data'的种类(list)不对

这个错误来源于

model_Liang_Guo <- coxph(Surv(time, event)~data$new_model_by_liang_guo,data=data)
summary(model_Liang_Guo)

去掉datas$  即可

ggDCA的包报错

R cox回归 ggDCA报错,统计分析与作图,r语言

由于survival包版本问题,从CRAN安装的ggDCA会报错(如上图)。

因此,要从作者的github上下载ggDCA

ggDCA安装文章来源地址https://www.toymoban.com/news/detail-835989.html

#1.安装devtools
install.packages("devtools")
#2.从github安装ggDCA
devtools::install_github('yikeshu0611/ggDCA')

#注:若是devtools::install_github('yikeshu0611/ggDCA')也报错,可先运行:
options(unzip ='internal')
 

到了这里,关于R cox回归 ggDCA报错的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 第17节 R语言分析:生物统计数据集 R 编码分析和绘图

    生物统计学,用于对给定文件 data.csv 中的医疗数据应用 R 编码,该文件是患者人口统计数据集,包含有关来自各种祖先谱系的个体的标准信息。

    2024年02月15日
    浏览(40)
  • R语言生物群落(生态)数据统计分析与绘图

    详情点击链接:R语言生物群落(生态)数据统计分析与绘图 前沿 R 语言作的开源、自由、免费等特点使其广泛应用于生物群落数据统计分析。生物群落数据多样而复杂,涉及众多统计分析方法。 一: R和Rstudio简介及入门和作图基础 1 ) R及Rstudio:背景、软件及程序包安装、

    2024年02月02日
    浏览(44)
  • 【教程】R语言生物群落(生态)数据统计分析与绘图

    查看原文R语言生物群落(生态)数据统计分析与绘图实践 暨融合《R语言基础》、《tidyverse数据清洗》、《多元统计分析》、《随机森林模型》、《回归及混合效应模型》、《结构方程模型》、《统计结果作图》七合一版本方案 R 语言作的开源、自由、免费等特点使其广泛应

    2024年02月06日
    浏览(45)
  • R语言生物群落(生态)数据统计分析与绘图教程

    详情点击链接:R语言生物群落(生态)数据统计分析与绘图教程 前沿  R 语言作的开源、自由、免费等特点使其广泛应用于生物群落数据统计分析。生物群落数据多样而复杂,涉及众多统计分析方法。   一: R和Rstudio及入门和作图基础 1 ) R及Rstudio:背景、软件及程序包安

    2024年01月24日
    浏览(46)
  • R语言生物群落(生态)数据统计分析与绘图实践技术应用

    R 语言作的开源、自由、免费等特点使其广泛应用于生物群落数据统计分析。生物群落数据多样而复杂,涉及众多统计分析方法。以生物群落数据分析中的最常用的统计方法回归和混合效应模型、多元统计分析技术及结构方程等数量分析方法为主线,通过多个来自经典研究中

    2024年02月08日
    浏览(48)
  • AI大语言模型GPT & R 生态环境领域数据统计分析

      自2022年GPT(Generative Pre-trained Transformer)大语言模型的发布以来,它以其卓越的自然语言处理能力和广泛的应用潜力,在学术界和工业界掀起了一场革命。在短短一年多的时间里,GPT已经在多个领域展现出其独特的价值,特别是在数据统计分析领域。GPT的介入为数据处理、

    2024年03月14日
    浏览(47)
  • 【案例实践】R语言多元数据统计分析在生态环境中的实践应用

    查看原文R语言生物群落分析绘图、多元统计分析、CMIP6、遥感碳储量、GEE林业、InVEST等 生态环境领域研究中常常面对众多的不同类型的数据或变量,当要同时分析多个因变量(y)时需要用到多元统计分析(multivariate statistical analysis)。多元统计分析内容丰富,应用广泛,是

    2023年04月12日
    浏览(49)
  • R语言 一种功能强大的数据分析、统计建模 可视化 免费、开源且跨平台 的编程语言

    R语言是一种广泛应用于数据分析、统计建模和可视化的编程语言。它由新西兰奥克兰大学的罗斯·伊哈卡和罗伯特·杰特曼开发,并于1993年首次发布。R语言是一个免费、开源且跨平台的语言,它在统计学和数据科学领域得到了广泛的应用。 R语言具有丰富的数据处理、统计分

    2024年02月07日
    浏览(55)
  • Meta分析的选题与文献计量分析CiteSpace应用丨R语言Meta分析【数据清洗、精美作图、回归分析、诊断分析、不确定性及贝叶斯应用】

    目录 ​专题一、Meta分析的选题与文献计量分析CiteSpace应用 专题二、Meta分析与R语言数据清洗及相关应用 专题三、R语言Meta分析与精美作图 专题四、R语言Meta回归分析 专题五、R语言Meta诊断分析与进阶 专题六、R语言Meta分析的不确定性及贝叶斯应用 专题七、深度拓展机器学习

    2024年02月15日
    浏览(50)
  • R语言对综合社会调查GSS数据进行自举法bootstrap统计推断、假设检验、探索性数据分析可视化|数据分享...

    综合社会调查(GSS)是由国家舆论研究中心开展的一项观察性研究。自 1972 年以来,GSS 一直通过收集当代社会的数据来监测社会学和态度趋势。其目的是解释态度、行为和属性的趋势和常量。从 1972 年到 2004 年,GSS 的目标人群是居住在家庭中的成年人(18 岁以上) ( 点击文

    2024年02月10日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包