数据结构--红黑树详解

这篇具有很好参考价值的文章主要介绍了数据结构--红黑树详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

什么是红黑树

红黑树(Red Black Tree)是一种自平衡二叉查找树。它是在 1972 年由 Rudolf Bayer 发明的,当时被称为平衡二叉 B 树(symmetric binary B-trees)。后来,在 1978 年被 Leo J. Guibas 和 Robert Sedgewick 修改为如今的“红黑树”。

由于其自平衡的特性,保证了最坏情形下在 O(logn) 时间复杂度内完成查找、增加、删除等操作,性能表现稳定。

在 JDK 中,TreeMapTreeSet 以及 JDK1.8 的 HashMap 底层都用到了红黑树。

为什么需要红黑树

红黑树的诞生就是为了解决二叉查找树的缺陷。

二叉查找树是一种基于比较的数据结构,它的每个节点都有一个键值,而且左子节点的键值小于父节点的键值,右子节点的键值大于父节点的键值。这样的结构可以方便地进行查找、插入和删除操作,因为只需要比较节点的键值就可以确定目标节点的位置。但是,二叉查找树有一个很大的问题,就是它的形状取决于节点插入的顺序。如果节点是按照升序或降序的方式插入的,那么二叉查找树就会退化成一个线性结构,也就是一个链表。这样的情况下,二叉查找树的性能就会大大降低,时间复杂度就会从 O(logn) 变为 O(n)。

红黑树的诞生就是为了解决二叉查找树的缺陷,因为二叉查找树在某些情况下会退化成一个线性结构。

红黑树的特点

  1. 每个节点非红即黑。黑色决定平衡,红色不决定平衡。这对应了 2-3 树中一个节点内可以存放 1~2 个节点。
  2. 根节点总是黑色的。
  3. 每个叶子节点都是黑色的空节点(NIL 节点)。这里指的是红黑树都会有一个空的叶子节点,是红黑树自己的规则。
  4. 如果节点是红色的,则它的子节点必须是黑色的(反之不一定)。通常这条规则也叫不会有连续的红色节点。一个节点最多临时会有 3 个节点,中间是黑色节点,左右是红色节点。
  5. 从根节点到叶节点或空子节点的每条路径,必须包含相同数目的黑色节点(即相同的黑色高度)。每一层都只是有一个节点贡献了树高决定平衡性,也就是对应红黑树中的黑色节点。

正是这些特点才保证了红黑树的平衡,让红黑树的高度不会超过 2log(n+1)。

数据结构--红黑树详解,数据结构与算法,数据结构文章来源地址https://www.toymoban.com/news/detail-836094.html

红黑树代码实现

c++版本

#include <iostream>
#include <queue>

enum Color {
    RED,
    BLACK
};

template <typename T>
struct Node {
    T data;
    Color color;
    Node* parent;
    Node* left;
    Node* right;
};

template <typename T>
class RedBlackTree {
public:
    RedBlackTree() : root(nullptr) {}

    void insert(T data) {
        Node<T>* newNode = new Node<T>();
        newNode->data = data;
        newNode->color = RED;
        newNode->left = nullptr;
        newNode->right = nullptr;

        if (root == nullptr) {
            root = newNode;
            root->color = BLACK;
        } else {
            Node<T>* current = root;
            Node<T>* parent = nullptr;

            while (current != nullptr) {
                parent = current;
                if (data < current->data) {
                    current = current->left;
                } else {
                    current = current->right;
                }
            }

            newNode->parent = parent;
            if (data < parent->data) {
                parent->left = newNode;
            } else {
                parent->right = newNode;
            }

            insertFixup(newNode);
        }
    }

    void printLevelOrder() {
        if (root == nullptr) {
            return;
        }

        std::queue<Node<T>*> q;
        q.push(root);

        while (!q.empty()) {
            Node<T>* current = q.front();
            q.pop();

            std::cout << current->data << " ";

            if (current->left != nullptr) {
                q.push(current->left);
            }

            if (current->right != nullptr) {
                q.push(current->right);
            }
        }
    }

private:
    Node<T>* root;

    void insertFixup(Node<T>* node) {
        while (node->parent != nullptr && node->parent->color == RED) {
            if (node->parent == node->parent->parent->left) {
                Node<T>* uncle = node->parent->parent->right;
                if (uncle != nullptr && uncle->color == RED) {
                    node->parent->color = BLACK;
                    uncle->color = BLACK;
                    node->parent->parent->color = RED;
                    node = node->parent->parent;
                } else {
                    if (node == node->parent->right) {
                        node = node->parent;
                        rotateLeft(node);
                 

到了这里,关于数据结构--红黑树详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据结构与算法(三):树论(树形结构、二叉树、二叉搜索树、红黑树、Btree&B+Tree、赫夫曼树、堆树)

    树论(树形结构、二叉树、二叉搜索树、红黑树、Btree、B+Tree、赫夫曼树、堆树) 在树形结构里面重要的术语: 结点:树里面的元素。 父子关系:结点之间相连的边 子树:当结点大于1时,其余的结点分为的互不相交的集合称为子树 度:一个结点拥有的子树数量称为结点的

    2024年02月01日
    浏览(94)
  • 【高阶数据结构】红黑树 {概念及性质;红黑树的结构;红黑树的实现;红黑树插入操作详细解释;红黑树的验证}

    红黑树(Red Black Tree) 是一种自平衡二叉查找树,在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。 AVL树 VS 红黑树 红黑树是

    2024年02月09日
    浏览(49)
  • 数据结构 | 红黑树

    节点的左边比节点的值小,右边比节点的值大。 节点要么是 红色 ,要么是 黑色 根节点 是黑色 叶子节点都是黑色的空节点 红黑树中红色节点的子节点都是黑色 从任一节点到叶子节点的所有路径都包含相同数目的黑色节点 在添加或者删除节点的时候,如果不满足这些性质会

    2024年01月21日
    浏览(44)
  • [数据结构]-红黑树

    前言 作者 : 小蜗牛向前冲 名言: 我可以接受失败,但我不能接受放弃   如果觉的博主的文章还不错的话,还请 点赞,收藏,关注👀支持博主。如果发现有问题的地方欢迎❀大家在评论区指正 目录 一、红黑树的基本知识  1、红黑树的概念 2、性质  二、红黑树的模拟实

    2024年02月04日
    浏览(46)
  • 【数据结构】红黑树

    🐱作者:一只大喵咪1201 🐱专栏:《数据结构与算法》 🔥格言: 你只管努力,剩下的交给时间! 在学习AVL树的时候,我们知道,当修改AVL树的结构(插入,删除)时,会通过旋转来保证平衡因子不超过1,所以频繁的修改结构会导致效率低下,今天我们学习的红黑树就完美解

    2023年04月17日
    浏览(49)
  • 数据结构——红黑树

    目录 概念 性质 结点的定义  插入 调整 当p是g的左孩子时 当p为g的右孩子时 插入完整代码 红黑树的检测 红黑树完整代码(包括测试数据)   红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是RED或BLACK。 通过对任何一条从根到叶子的路径

    2023年04月09日
    浏览(46)
  • 【数据结构-树】红黑树

    💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kuan 的首页,持续学习,不断总结,共同进步,活到老学到老 导航 檀越剑指大厂系列:全面总

    2024年02月07日
    浏览(44)
  • 红黑树数据结构

    现在JAVASE中HashMap中底层源码是由数组+链表+红黑树进行设计的,然后很多地方也是用到红黑树,这里单独对红黑树数据结构进行简单的介绍。 目录 红黑树概念 红黑树的性质 自平衡规则 代码   红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可

    2024年02月01日
    浏览(40)
  • C++数据结构--红黑树

    红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路 径会比其他路径长出俩倍,因而是接近平衡的。如图所示: 每个结点不是红色就是黑色。

    2024年02月09日
    浏览(49)
  • 数据结构入门-11-红黑树

    史上最负盛名的平衡二叉树–红黑树,但其实就是2-3树的一种实现 也是BST,每一个节点都有颜色 性质 看 后面推导出来的结论 2-3树 :和红黑树是等价的 满足BST的基本性质,但不是一种二叉树 有两种节点: 2-3 绝对平衡:根节点到叶子节点 一定相同 2.3.1 如何维护绝对平衡

    2023年04月17日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包