Redis的常见面试题

这篇具有很好参考价值的文章主要介绍了Redis的常见面试题。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

前言

Redis支持哪些数据类型

五种核心类型 

Zset为什么用跳表不用红黑树 ?

Redis常见的应用场景? 

 如何检测Redis的连通性?

如何设置key的过期时间? 

Redis为什么是单线程模型? 

Redis里的IO多路复用是什么? 

RDB的持久化机制有哪些? 

AOF的重写机制是怎么样的? 

 Redis的过期删除策略是怎么样的?

Redis处理缓存雪崩的问题:

Redis的主从复制是怎么回事?

 介绍一下Redis哨兵

 Redis集群是干什么用的?

Redis的哈希槽是怎么回事? 

Redis集群会有操作丢失吗? 

 如何理解Redis的事务?和MySQL的事务有什么区别?

什么是缓存穿透、缓存雪崩、缓存击穿 

缓存穿透

缓存雪崩

缓存击穿

 Redis和MySQL如何保证双写一致性?

 Redis的“bigkey”问题


前言

Redis是一个高性能的key-value的内存数据库 ,在内存上的数据会随着掉电而通通消失,所以就有了不同的持久化的方式(搞到硬盘上)。Redis没有关系型数据库那种复杂查询的功能,而换来的是简单易用和高性能~~

Redis支持哪些数据类型

五种核心类型 

  • String
  • Hashmap
  • List
  • Set
  • Zset 

 后续新增了一些数据类型~

  • Bitmap:通过二进制位表示某个数是否存在
  • Bitfield:把字符串当作位图,进行位操作
  • Hyperloglog:基于位图实现计数效果
  • Geospatial:地理信息,存储经纬度,并可以进行一些空间计算
  • Stream:消息队列

Zset为什么用跳表不用红黑树 ?

跳表的插入、删除、查询的时间复杂度一样是O(logN),与红黑树一样。但是跳表更简单,不需要重新平衡这种操作

Redis常见的应用场景? 

  • 缓存:用来保存常见的热点数据,减少数据库的压力
  • 计数器:统计点击次数、收藏、点赞次数等
  • 排行榜:可以基于Zset简单实现
  • 分布式会话:使用Redis存储会话信息,可以让用户访问到系统的不同模块的时候都使用同一个公共会话
  • 分布式锁:对于分布式的一种并发控制手段,可以基于Redis来实现,上篇文章有详细展开
  • 消息队列:Redis自身支持Stream数据类型,可以作为简单的消息队列使用

 如何检测Redis的连通性?

给服务端发送一个 "ping" ,通顺的话就会收到 "pong" 

如何设置key的过期时间? 

可以在set key的时候通过EX选项指定过期时间,也可以再使用expire对已存在的key设置过期时间 

Redis为什么是单线程模型? 

Redis内部逻辑较为简单,大部分的性能瓶颈都是出现在IO或内存上,很少是CPU。因此使用多线程还没多大收益,还容易引入线程安全问题

从Redis6.0开始,Redis引入多线程,此时它也只是使用多线程去处理网络请求+协议解析,真正执行Redis命令的仍然是单线程完成,这样可以提高IO处理效率 

Redis里的IO多路复用是什么? 

 Redis主要是基于Linux提供的epoll机制来完成IO多路复用(之前文章详细讲述过)

所谓IO多路复用,其实就是一个线程来管理多个 socket ,并按需激活线程

|  假如在同一个单位时间内,有多个Redis客户端的请求到来了.....

使用传统的方式是给每一个客户端连接开一个线程,但是大部分的客户端不会频繁的给你      传输,即多数是空闲线程(不活跃) , 所以搞一堆线程不如就用一个线程来处理,反正并    发量不会太高而且处理速度又飞快

上述的操作被Linux封装好了,就是IO多路复用

在Linux中有三种实现方式:

  • select
  • poll
  • epoll

epoll是最新,也是最高效的版本(之前文章有详细讲述)这里浅浅谈一下

epoll在内核维护了一个红黑树,来管理这些socket,并且每一个节点都关联了一个事件回调,当系统内核感知到网卡收到数据,进一步判定这个数据是给哪一个socket的,随之调用对应的回调函数,进一步唤醒用户线程,来处理这个数据

RDB的持久化机制有哪些? 

 RDB和AOF两种

RDB:

  • RDB是一个紧凑的二进制文件,代表Redis某个时间的数据快照。适合备份,全量复制的场景。
  • Redis加载RDB文件来恢复数据远快于AOF
  • 但是RDB也没办法做到实时持久化。因为每次的bgsave都需要fork,全量复制对于cpu和硬盘的负荷大
  • 此外,RDB文件使用特定的二进制格式保存,Redis版本演进过程中有多个RDB版本,兼容性可能有冲突

 AOF:

  • AOF记录所有写入Redis的命令(文本方式),因此AOF的实时性高,适合在Redis宕机的时候恢复
  • AOF提供了重写功能,可以定期对AOF文件进行重写,取出冗余命令,减小AOF大小
  • 由于每次的命令都要同步到AOF文件中,所以会有一定的写入延迟
  • AOF文件是文本类型的数据比较大
  • 如果AOF的文件过大就会导致恢复速度比较慢了

AOF的重写机制是怎么样的? 

  1.  Redis在后台启动一个AOF重写进程
  2.  在AOF重写过程中,Redis继续处理客户端请求,并将这份数据同时保存到旧AOF文件以及一个缓冲区
  3. 新的AOF文件会遍历内存中的数据状态,只保留数据的最后状态。并与缓冲区共同生成一份完整的AOF文件
  4. 用新的AOF文件来代替旧的AOF文件

Redis的常见面试题,Redis,redis,数据库,缓存,哨兵

 Redis的过期删除策略是怎么样的?

惰性过期

只有当访问一个key的时候才能判断他是否过期,过期就清除。

这种策略方式可以节省CPU资源,但是会有可能出现大量过期的key未被再次访问,导致占用大量内存

定期过期

每个一段时间,会扫描一定数量的数据库expires字典中一定数量的key,并清除已过期的key。

expire字典中会保存所有设置了过期时间的key的过期时间数据,其中key是指向某个键的指针,value是该键的毫秒精度的UNIX时间戳表示过期时间

 Redis中则是同时使用了这两种策略:

  • 每隔100ms就随机抽取一定数量的key来检查和删除
  • 在获取key的时候检查一下是否过期,过期就删除

Redis处理缓存雪崩的问题:

首先对于定期删除来说,Redis会注册一个定时器,每个一定时间就触发一次

在删除的时候会根据事先统计好的过期key的个数来决定后续策略

如果过期key的个数超过总key的25%,就会让Redis持续删除过期key直到最大删除时间(默认25ms),但即使如此,有些对性能要求高的常见仍然会因为阻塞25ms导致性能下降

解决方案:可以在过期时间上加上随机值,使过期时间分散一点,降低触发这个25%阈值

Redis的主从复制是怎么回事?

 其实就是为了保证咱redis的高可用减少单个节点的负载(具体流程之前文章讲述过)

Redis主从复制https://blog.csdn.net/Obto_/article/details/135946296

 介绍一下Redis哨兵

之前文章有详细讲述,感兴趣的可以看看这篇文章
Redis哨兵https://blog.csdn.net/Obto_/article/details/135964383

Redis Sentinel是Redis的高可用的实现方案,在实际的生产环境中,对整个系统的高可用提升是非常有帮助的,当主从复制结构中某个节点宕机之后,哨兵能够自动发现故障并完成故障转移

如果是主节点故障,哨兵之中会互相协商(哨兵不只一个),当大多数哨兵节点达成主节点宕机的结果后,就会在哨兵之中推举出一个领导节点来自动完成故障转转移的工作,同时将这个变化通知给Redis客户端,这个过程是全自动的不需要人工介入

 Redis集群是干什么用的?

 之前的文章有详细讲述,感兴趣的可以看看这篇文章

Redis集群https://blog.csdn.net/Obto_/article/details/136176895

Redis集群引入多组Master/Slave,每一组Master/Slave存储数据全集的一部分,从而构成更大的整体,解决单个Master/Slave能够达到的性能上限,能够存储更多的数据

好比一个30T的资源放在一个硬盘放不下,就可以放在3个10T的硬盘上 

 

Redis的哈希槽是怎么回事? 

在Redis集群中要合理的分配各个主节点的资源,所以就有了不同的hash方式将数据映射到对应的分片中

第一种就是直接hash 一个 N ,N为分片的总数,这样能够保证数据随机分配,但是一旦出现数据扩容的情况,N发生了变化,此时之前的映射关系全部作废,扩容的代价很大

第二种就是一致性hash,统一hash一个数,这样能解决上述因扩容而导致的映射关系被破坏,但是会导致数据的不均匀

因此哈希槽分区算法就出来了

哈希槽分区算法:

将所有的key都映射到16284(2^14) 个槽位上,再把这些槽均匀的分配给每个分片,每个分片只需要记录自己拥有哪些槽位即可 (详细的连接在上面Redis集群链接中)

 

Redis集群会有操作丢失吗? 

Redis并不能保证数据的强一致性,实际中集群在特定的条件下可能会丢失写操作

比如在成功写入一个key之后,正好主节点宕机,那么此时由于这个数据还未来得及同步到从节点,也没来得及写入AOF日志,就会丢失

 

 如何理解Redis的事务?和MySQL的事务有什么区别?

区别:

  • 弱原子性
  • 不保证一致性
  • 不需要隔离性
  • 不需要持久化 

Redis事务的本质就是在服务器搞了一个“事务队列”,每次客户端进行操作的时候,就先把命令保存在事务队列中,收到EXEC命令后才会一起执行

Redis事务和MySQL事务的概念上是一样的,都是把一系列的操作捆绑成一组,让一组批量执行

 

什么是缓存穿透、缓存雪崩、缓存击穿 

缓存穿透

访问的key不存在客户端也不存在服务端,此时这样的key就不被缓存起来,而高频的访问这个不存在的key就会导致Redis失去他“保护盾”的作用

解决办法:

1.布隆过滤器

2.将不存在的key也存在redis并随便设置value为'.'

3.对需要查询的key进行严格的合法性校验,不合规的不让查

缓存雪崩

短时间内大量的key 在缓存上失效,导致数据库压力暴增

解决方法:

1.部署高可用的Redis集群

2.不给key设置时间,或设置时间的时候添加随机时间因子

缓存击穿

相当于缓存血崩的特殊情况,就是针对热点key过期了,导致大量的请求访问到了MySQL上

解决方法:

1.基于统计的方式发现热点key,并设置永不过期

2.进行必要的服务降级,访问数据的时候使用分布式锁,限制并发数

 Redis和MySQL如何保证双写一致性?

什么是“双写一致性” ??

当用户修改数据的时候,需要修改数据库,同时也要更新缓存中的数据 

如果直接写数据库并写Redis,此时万一有一方写入失败,就容易出现数据不一致情况

解决方法:

方案一:延迟双删

1.删除缓存数据

2.更新数据库

3.再删除缓存数据

方案二:删除缓存重试

1.先删除缓存数据,如果失败,就把失败的key放到一个mq中,稍后进行重试

 

 Redis的“bigkey”问题

指的就是key对应的value很大占据较大的存储空间

可以使用redis-cli --bigkey查找bigkey,删除bigkey尽量不要用del,用unlink在后台删

这样的big可以会导致读写的时候性能下降,如果是集群分配部署,也会引起不同分片的数据倾斜

解决方案:

核心思路就是拆分,将大key拆成多个小key,每个key对应value的一部分数据 文章来源地址https://www.toymoban.com/news/detail-836130.html

到了这里,关于Redis的常见面试题的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • redis的缓存更新策略以及如何保证redis与数据库的数据一致性

    redis的缓存更新策略有这么几种: 1、由应用直接和redis以及数据库相连接:         查询数据时,应用去redis中查询,查不到的话再由应用去数据库中查询,并将查询结果放在redis;         更新数据时,由应用去触发redis数据的删除以及数据库的update。 2、应用只跟redi

    2024年02月13日
    浏览(53)
  • Redis---数据库和缓存如何保证一致性?

    用「读 + 写」请求的并发的场景来分析: 假如某个用户数据在缓存中不存在,请求 A 读取数据时从数据库中查询到年龄为 20,在未写入缓存中时另一个请求 B 更新数据。它更新数据库中的年龄为 21,并且清空缓存。这时请求 A 把从数据库中读到的年龄为 20 的数据写入到缓存

    2024年01月24日
    浏览(53)
  • Redis如何保证缓存和数据库一致性?

    现在我们在面向增删改查开发时,数据库数据量大时或者对响应要求较快,我们就需要用到Redis来拿取数据。 Redis:是一种高性能的内存数据库,它将数据以键值对的形式存储在内存中,具有读写速度快、支持多种数据类型、原子性操作、丰富的特性等优势。 优势: 性能极高

    2024年01月16日
    浏览(66)
  • Redis如何保障缓存与数据库的数据一致性问题?

    目录 一.最经典的数据库加缓存的双写双删模式 二. 高并发场景下的缓存+数据库双写不一致问题分析与解决方案设计 三、上面高并发的场景下,该解决方案要注意的问题 1.1 Cache Aside Pattern概念以及读写逻辑 (1)读的时候,先读缓存,缓存没有的话,那么就读数据库,然后取

    2023年04月21日
    浏览(47)
  • Springboot+Redis:实现缓存 减少对数据库的压力

    🎉🎉欢迎光临,终于等到你啦🎉🎉 🏅我是苏泽,一位对技术充满热情的探索者和分享者。🚀🚀 🌟持续更新的专栏 Redis实战与进阶 本专栏讲解Redis从原理到实践 这是苏泽的个人主页可以看到我其他的内容哦👇👇 努力的苏泽 http://suzee.blog.csdn.net/   目录 缓存如何实现?

    2024年03月24日
    浏览(54)
  • Redis数据库 | 发布订阅、主从复制、哨兵模式、缓存雪崩

    💗wei_shuo的个人主页 💫wei_shuo的学习社区 🌐Hello World ! Redis 发布订阅 (pub/sub) 是一种消息通信模式:发送者 (pub) 发送消息,订阅者 (sub) 接收消息 Redis 客户端可以订阅任意数量的频道 Redis主从复制是指在Redis中设置一个主节点(Master)和一个或多个从节点(Slave),

    2024年02月15日
    浏览(51)
  • 数据库缓存服务——NoSQL之Redis配置与优化

    目录 一、缓存概念 1.1 系统缓存 1.2 缓存保存位置及分层结构 1.2.1 DNS缓存 1.2.2 应用层缓存 1.2.3 数据层缓存 1.2.4 硬件缓存 二、关系型数据库与非关系型数据库 2.1 关系型数据库 2.2 非关系型数据库 2.3 关系型数据库和非关系型数据库区别: 2.4 非关系型数据库产生背景 2.5 总结

    2024年02月15日
    浏览(48)
  • redis面试题目-如何保证数据库与缓存的数据一致性

    原视频:https://www.bilibili.com/video/BV1Km4y1r75f?p=62vd_source=fa75329ae3880aa55609265a0e9f5d34 由于缓存和数据库是分开的,无法做到原子性的同时进行数据修改,可能出现缓存更新失败,或者数据库更新失败的情况,这时候会出现数据不一致,影响前端业务 先更新数据库,再更新缓存。缓

    2024年02月05日
    浏览(59)
  • Redis缓存MySQL数据库存储二者如何保证数据一致性

    在大型互联网应用中,由于数据库读写频繁、压力大等原因,我们通常会使用缓存来减少数据库的访问次数,提高系统的性能。而Redis作为一个高性能的内存数据库,成为了缓存的首选方案之一。但是,缓存和数据库之间存在数据一致性的问题,如何解决这个问题呢?本文将

    2023年04月19日
    浏览(49)
  • Redis 缓存与数据库双写不一致如何解决

    Redis缓存与数据库双写不一致是一个常见的挑战,但可以通过一些方法来解决或减轻这种不一致性。以下是一些可能的解决方案: 事务处理: 在进行缓存和数据库双写时,确保它们被包含在同一事务中。这可以通过使用支持事务的数据库和Redis事务来实现。这样,要么两者同

    2024年01月21日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包