DAY55:动态规划(买卖股票的最佳时机3)

这篇具有很好参考价值的文章主要介绍了DAY55:动态规划(买卖股票的最佳时机3)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Leetcode: 309 最佳买卖股票时机含冷冻期

这道题比上面状态更多,是因为卖出股票后,你无法在第二天买入股票 (即冷冻期为1天)。

状态

状态一:持有股票状态(今天买入股票,或者是之前就买入了股票然后没有操作,一直持有)

不持有股票状态,这里就有两种卖出股票状态

状态二:保持卖出股票的状态(两天前就卖出了股票,度过一天冷冻期。或者是前一天就是卖出股票状态,一直没操作)

状态三:今天卖出股票

状态四:今天为冷冻期状态,但冷冻期状态不可持续,只有一天!(状态4包含在状态2中)

递推公式

这样递推公式就会比较复杂

1、买入股票状态(状态一)即:dp[i][0],有两个具体操作:

操作一:前一天就是持有股票状态(状态一),dp[i][0] = dp[i - 1][0]

操作二:今天买入了,有两种情况

前一天是冷冻期(状态四),dp[i - 1][3] - prices[i]

前一天是保持卖出股票的状态(状态二),dp[i - 1][1] - prices[i]

那么dp[i][0] = max(dp[i - 1][0], dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]);

2、保持卖出股票状态(状态二)即:dp[i][1],有两个具体操作:

操作一:前一天就是状态二

操作二:前一天是冷冻期(状态四)

dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);

3、今天就卖出股票状态(状态三),即:dp[i][2] ,只有一个操作:

昨天一定是持有股票状态(状态一),今天卖出

即:dp[i][2] = dp[i - 1][0] + prices[i];

4、冷冻期状态(状态四),即:dp[i][3],只有一个操作:

昨天卖出了股票(状态三)

dp[i][3] = dp[i - 1][2];

最后结果是取 状态二,状态三,和状态四的最大值。

弄清楚这些关系之后,代码就很好写了。

时间复杂度:O(n)

空间复杂度:O(n)

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        vector<vector<int>> dp(len, vector<int>(4, 0));
        dp[0][0] = -prices[0];
        for(int i = 1; i < len; i++){
            dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]));
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
            dp[i][2] = dp[i - 1][0] + prices[i];
            dp[i][3] = dp[i - 1][2];
        }
        return max(dp[len-1][1],max(dp[len-1][2],dp[len-1][3]));

    }
};

Leetcode: 714 买卖股票的最佳时机含手续费

这题可以视为122 买卖股票的最佳时机II的变种,因为增加了手续费,这样我们只需要在卖出这只股票的时候减去手续费就好了,因此所有的代码保持不变,只需要更新卖出股票的时候的dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);就可以了。

时间复杂度:O(n)

空间复杂度:O(n)

代码如下:

class Solution {
public:
    int maxProfit(vector<int>& prices, int fee) {
        int len = prices.size();
        vector<vector<int>> dp(len, vector<int>(2, 0));
        dp[0][0] -= prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < len; i++) {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]); 
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
        }
        return dp[len - 1][1];

    }
};

总结

这段时间跟着代码随想录完成了下述的股票问题,受益匪浅。

代码随想录

DAY55:动态规划(买卖股票的最佳时机3),leetcode刷题系列,算法,leetcode,数据结构,c++,学习,动态规划

做这种类型的题目,一定要注意状态的划分和状态的变化。

1、分析状态和状态变化的关系,只有这些清楚了才能正确解题,找到递推公式。需要重点掌握这些状态函数的写法。

2、注意初始化,初始化的数值设置很重要,不然容易出错。

3、最后输出往往是取最大的。

4、递推顺序,一般是从前到后。文章来源地址https://www.toymoban.com/news/detail-836383.html

到了这里,关于DAY55:动态规划(买卖股票的最佳时机3)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 动态规划 Leetcode 714 买卖股票的最佳时机含手续费

    Leetcode 714 学习记录自代码随想录 要点:1.两种状态持有股票和不持有股票; 2.递推公式 d p [ i ] [ 0 ] = m a x ( d p [ i − 1 ] [ 0 ] , d p [ i − 1 ] [ 1 ] − p r i c e s [ i ] ) d p [ i ] [ 1 ] = m a x ( d p [ i − 1 ] [ 1 ] , d p [ i − 1 ] [ 0 ] + p r i c e s [ i ] − f e e ) dp[i][0] = max(dp[i-1][0], dp[i-1][1]-prices

    2024年04月09日
    浏览(46)
  • 研习代码 day42 | 动态规划——买卖股票的最佳时机 I II

            1.1 题目         给定一个数组  prices  ,它的第  i  个元素  prices[i]  表示一支给定股票第  i  天的价格。         你只能选择  某一天  买入这只股票,并选择在  未来的某一个不同的日子  卖出该股票。设计一个算法来计算你所能获取的最大利润。

    2024年02月03日
    浏览(41)
  • 算法[动态规划]---买卖股票最佳时机

    1、题目: 给你一个整数数组 prices,其中 prices[i] 表示某支股票第 i 天的价格。 在每一天,你可以决定是否购买和/或出售股票。你在任何时候最多只能持一股股票。你也可以先购买,然后在同一天出售。 返回你能获得的最大利润 。 2、 分析特点: 题目要求:在任何时候最多

    2024年02月09日
    浏览(42)
  • 动态规划——买卖股票的最佳时机系列题

    买卖股票有一系列题目 以下是我找出它们之间的区别: 第一题,只能买一次,从最低价入手,最高价卖出 第二题,可以买无数次,但买了之后,必须卖出之后,再来重新买入,再卖出。 第三题,只能买两次,但买了之后,必须卖出之后,再来重新买入,再卖出。 第四题,

    2024年01月17日
    浏览(50)
  • 动态规划——买卖股票的最佳时机系列题Ⅱ

    这一期是和上一期是连着的,包含的题目如下: 这三个题目所需要的思路是很相近的,先给出第一个的题目。 给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。 设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。 注意:你不能同时

    2024年01月19日
    浏览(42)
  • Day32 贪心算法 part02 122. 买卖股票的最佳时机 II 55. 跳跃游戏 45. 跳跃游戏 II

    思路:计算每天的利润,利润如果为正,加到结果中去

    2024年01月19日
    浏览(44)
  • 【学会动态规划】最佳买卖股票时机含冷冻期(15)

    目录 动态规划怎么学? 1. 题目解析 2. 算法原理 1. 状态表示 2. 状态转移方程 3. 初始化 4. 填表顺序 5. 返回值 3. 代码编写 写在最后: 学习一个算法没有捷径,更何况是学习动态规划, 跟我一起刷动态规划算法题,一起学会动态规划! 题目链接:309. 最佳买卖股票时机含冷冻

    2024年02月14日
    浏览(54)
  • 【学会动态规划】买卖股票的最佳时机 III(17)

    目录 动态规划怎么学? 1. 题目解析 2. 算法原理 1. 状态表示 2. 状态转移方程 3. 初始化 4. 填表顺序 5. 返回值 3. 代码编写 写在最后: 学习一个算法没有捷径,更何况是学习动态规划, 跟我一起刷动态规划算法题,一起学会动态规划! 题目链接:123. 买卖股票的最佳时机 II

    2024年02月13日
    浏览(52)
  • 【学会动态规划】买卖股票的最佳时机 IV(18)

    目录 动态规划怎么学? 1. 题目解析 2. 算法原理 1. 状态表示 2. 状态转移方程 3. 初始化 4. 填表顺序 5. 返回值 3. 代码编写 写在最后: 学习一个算法没有捷径,更何况是学习动态规划, 跟我一起刷动态规划算法题,一起学会动态规划! 题目链接:188. 买卖股票的最佳时机 IV

    2024年02月13日
    浏览(43)
  • 动态规划-状态机(188. 买卖股票的最佳时机 IV)

    状态分类: f[i,j,0]考虑前i只股票,进行了j笔交易,目前未持有股票 所能获得最大利润 f[i,j,1]考虑前i只股票,进行了j笔交易,目前持有股票 所能获得最大利润 状态转移: f[i][j][0] = Math.max(f[i-1][j][0],f[i-1][j][1]+prices[i]); f[i][j][1] = Math.max(f[i-1][j][1],f[i-1][j-1][0]-prices[i]);   还有一位

    2024年02月08日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包