【深度学习】微调Qwen1.8B

这篇具有很好参考价值的文章主要介绍了【深度学习】微调Qwen1.8B。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.前言 

        使用地址数据微调Qwen1.8B。Qwen提供了预构建的Docker镜像,在使用时获取镜像只需安装驱动、下载模型文件即可启动Demo、部署OpenAI API以及进行微调。

        github地址:GitHub - QwenLM/Qwen: The official repo of Qwen (通义千问) chat & pretrained large language model proposed by Alibaba Cloud.​​​​​​​

        镜像地址:https://hub.docker.com/r/qwenllm/qwen/tags

        获取方式:docker pull qwenllm/qwen:cu117

 2.微调过程

        Qwen的介绍中给出了详细的微调教程。可访问千问github中的微调章节查看。如果使用预先准备的docker,微调则更为方便。

【深度学习】微调Qwen1.8B,深度学习,人工智能

【深度学习】微调Qwen1.8B,深度学习,人工智能

2.1 准备镜像

        需要注意的是:在官方提供的docker镜像中,运行docker run 镜像成为容器后,会启动镜像中的python服务。Dockerfile中最后一行命令为"CMD ["python3" "web_demo.py" "--server-port" "80"]。我们在使用容器微调时,不需要让容器中开启服务,所以需要以官方提供的镜像为基础,再做一个镜像。 Dockerfile内容如下。

FROM qwenllm/qwen:cu117

# CMD 设置为一个空命令,这样可以在容器启动时不执行任何操作
CMD ["/bin/sh", "-c", "tail -f /dev/null"]
#创建镜像
docker build -t qwenllm/qwen:cu117_V1 .

2.2 准备数据

        首先,需要准备训练数据。需要将所有样本放到一个列表中并存入json文件中。每个样本对应一个字典,包含id和conversation,其中后者为一个列表。示例如下所示:

[
  {
    "id": "identity_0",
    "conversations": [
      {
        "from": "user",
        "value": "你好"
      },
      {
        "from": "assistant",
        "value": "我是一个语言模型,我叫通义千问。"
      }
    ]
  }
]

本次微调的训练为指令微调,数据示例如下:

[
    {
        "id": "identity_0",
        "conversations": [
            {
                "from": "user",
                "value": "识别以下句子中的地址信息,并按照{address:['地址']}的格式返回。如果没有地址,返回{address:[]}。句子为:在一本关于人文的杂志中,我们发现了一篇介绍北京市海淀区科学院南路76号社区服务中心一层的文章,文章深入探讨了该地点的人文历史背景以及其对于当地居民的影响。"
            },
            {
                "from": "assistant",
                "value": "{\"address\":\"北京市海淀区科学院南路76号社区服务中心一层\"}"
            }
        ]
    },
    {
        "id": "identity_1",
        "conversations": [
            {
                "from": "user",
                "value": "识别以下句子中的地址信息,并按照{address:['地址']}的格式返回。如果没有地址,返回{address:[]}。句子为:近日,位于北京市房山区政通路13号的某儿童教育机构因出色的育儿理念和创新教学方法引起了广泛关注。"
            },
            {
                "from": "assistant",
                "value": "{\"address\":\"北京市房山区政通路13号\"}"
            }
        ]
    },
    {
        "id": "identity_2",
        "conversations": [
            {
                "from": "user",
                "value": "识别以下句子中的地址信息,并按照{address:['地址']}的格式返回。如果没有地址,返回{address:[]}。句子为:在军事领域中,位于朝阳区惠民园4号楼底商的某单位,一直致力于各种研究和发展工作,以保障国家安全和稳定。"
            },
            {
                "from": "assistant",
                "value": "{\"address\":\"朝阳区惠民园4号楼底商\"}"
            }
        ]
    }
]

2.3 微调

2.3.1 微调方法1

        我们借助Qwen给出的docker进行微调。图为使用docker进行微调的示例。

【深度学习】微调Qwen1.8B,深度学习,人工智能

IMAGE_NAME=qwenllm/qwen:cu117
CHECKPOINT_PATH='/ssd/dongzhenheng/LLM/Qwen-1_8B-Chat'               # 下载的模型和代码路径
#CHECKPOINT_PATH=/path/to/Qwen-7B-Chat-Int4     # 下载的模型和代码路径 (Q-LoRA)
DATA_PATH='/data/zhenhengdong/WORk/Fine-tuning/Codes/'                   # 准备微调数据放在 ${DATA_PATH}/example.json #data.json
OUTPUT_PATH='/ssd/dongzhenheng/LLM/Qwen-Address/tezt'          # 微调输出路径

# 默认使用主机所有GPU
DEVICE=all
# 如果需要指定用于训练的GPU,按照以下方式设置device(注意:内层的引号不可省略)
#DEVICE='"device=0,3"'

mkdir -p ${OUTPUT_PATH}

# 单卡LoRA微调
docker run --gpus ${DEVICE} --rm --name qwen \
    --mount type=bind,source=${CHECKPOINT_PATH},target=/data/shared/Qwen/Qwen-7B \
    --mount type=bind,source=${DATA_PATH},target=/data/shared/Qwen/data \
    --mount type=bind,source=${OUTPUT_PATH},target=/data/shared/Qwen/output_qwen \
    --shm-size=2gb \
    -it ${IMAGE_NAME} \
    bash finetune/finetune_lora_single_gpu.sh -m /data/shared/Qwen/Qwen-7B/ -d /data/shared/Qwen/data/data.json
    #bash finetune/finetune_lora_ds.sh -m /data/shared/Qwen/Qwen-7B/ -d /data/shared/Qwen/data/data.json
    #bash finetune/finetune_lora_ds.sh -m /data/shared/Qwen/Qwen-7B/ -d /data/shared/Qwen/data/data.json
    #bash finetune/finetune_lora_ds.sh -m /data/shared/Qwen/Qwen-7B/ -d /data/shared/Qwen/data/data.json
    

微调时间较长,运行时可以新启动一个screen。

【深度学习】微调Qwen1.8B,深度学习,人工智能

微调结束后会在指定的输出目录下输出adapter的相关文件。

【深度学习】微调Qwen1.8B,深度学习,人工智能

2.3.2 微调方法2

        微调方法1中直接运行了finetune/finetune_lora_single_gpu.sh脚本进行微调。finetune_lora_single_gpu.sh中的内容如下。

#!/bin/bash
export CUDA_DEVICE_MAX_CONNECTIONS=1

MODEL="your model path" # Set the path if you do not want to load from huggingface directly
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
# See the section for finetuning in README for more information.
DATA="your data path"

function usage() {
    echo '
Usage: bash finetune/finetune_lora_single_gpu.sh [-m MODEL_PATH] [-d DATA_PATH]
'
}

while [[ "$1" != "" ]]; do
    case $1 in
        -m | --model )
            shift
            MODEL=$1
            ;;
        -d | --data )
            shift
            DATA=$1
            ;;
        -h | --help )
            usage
            exit 0
            ;;
        * )
            echo "Unknown argument ${1}"
            exit 1
            ;;
    esac
    shift
done

export CUDA_VISIBLE_DEVICES=3

python finetune.py \
  --model_name_or_path $MODEL \
  --data_path $DATA \
  --bf16 True \
  --output_dir output_qwen \
  --num_train_epochs 50\
  --per_device_train_batch_size 2 \
  --per_device_eval_batch_size 1 \
  --gradient_accumulation_steps 8 \
  --evaluation_strategy "no" \
  --save_strategy "steps" \
  --save_steps 1000 \
  --save_total_limit 5 \
  --learning_rate 3e-4 \
  --weight_decay 0.1 \
  --adam_beta2 0.95 \
  --warmup_ratio 0.01 \
  --lr_scheduler_type "cosine" \
  --logging_steps 1 \
  --report_to "none" \
  --model_max_length 512 \
  --lazy_preprocess True \
  --gradient_checkpointing \
  --use_lora

# If you use fp16 instead of bf16, you should use deepspeed
# --fp16 True --deepspeed finetune/ds_config_zero2.json

各个参数的解释如下: 

python finetune.py: 运行脚本finetune.py,用于微调模型。

--model_name_or_path $MODEL: 指定预训练模型的名称或路径。$MODEL是一个变量,将在运行时替换为实际的模型路径。

--data_path $DATA: 指定向量化的训练数据集路径。$DATA是一个变量,将替换为实际的数据集路径。

--bf16 True: 使用BF16(Brain Floating Point 16)精度进行训练,以降低内存消耗和加速计算。

--output_dir output_qwen: 指定模型训练完成后输出文件的目录名。

--num_train_epochs 50: 设置训练轮数为50轮。

--per_device_train_batch_size 2: 每个设备上的训练批次大小为2,即每次在每个GPU上处理2个样本。

--per_device_eval_batch_size 1: 每个设备上的评估批次大小为1。

 --gradient_accumulation_steps 8: 累积8个步骤的梯度后再更新权重,等效于增大了训练批次大小。

 --evaluation_strategy "no": 不在训练过程中执行评估。

 --save_strategy "steps": 根据步数保存模型,而不是按时间间隔保存。

 --save_steps 1000: 每训练1000个步后保存一次模型。

 --save_total_limit 5: 限制最多保存最近的5个模型检查点。

 --learning_rate 3e-4:指定学习率(learning rate),这是优化器更新权重时使用的步长。值为3乘以10的负4次方,意味着训练过程中的学习速率相对较小,有助于更精细地调整模型参数。

 --weight_decay 0.1:L2正则化系数,也称为权重衰减(weight decay)。它用于防止模型过拟合,通过对权重矩阵施加惩罚来约束模型复杂度。

 --adam_beta2 0.95:Adam优化器中的第二个动量项的指数衰减率(beta2)。Adam是一种常用的优化算法,该参数影响了历史梯度平方项的累积速度。

 --warmup_ratio 0.01:学习率预热比例,用于学习率调度器中。这意味着在训练开始阶段会有一个学习率逐渐增大的“预热”阶段,其长度占整个训练周期的1%。

 --lr_scheduler_type "cosine":学习率调度器类型,这里使用的是余弦退火(Cosine Annealing)策略。在训练过程中,学习率会按照余弦函数的变化规律进行动态调整。

 --logging_steps 1:指定每多少个步骤输出一次日志信息。设置为1意味着每次迭代(通常是每个训练批次后)都会记录训练状态或指标。

 --report_to "none":设置训练结果报告的位置或方式。"none"意味着不向任何工具或平台报告进度或指标。

 --model_max_length 512:定义模型处理的最大序列长度。这意味着输入数据将被截断或者填充到不超过512个token。

 --lazy_preprocess True:如果支持的话,启用延迟预处理模式。在这种模式下,数据预处理将在需要时而不是一次性全部完成,可以减少内存占用。

 --gradient_checkpointing:启用梯度检查点功能,这是一种内存优化技术,通过存储和恢复中间层的激活以节省内存,特别适用于大模型训练。

 --use_lora:表示在微调过程中应用LoRA(Low-Rank Adaptation)方法,这是一种针对大规模模型参数高效的微调技术,通过引入低秩适配器来更新模型权重,而不直接修改所有参数,从而减少计算资源消耗。

        如果想更改finetune.py的参数,那就需要进入进入容器中微调。可以在容器外修改finetune_lora_single_gpu.sh文件中的参数,比如训练的轮次、训练的批次、训练多少步后保存模型、模型处理的最大序列长度等。修改后将文件cp到容器中。具体过程如下:

#启动docker
docker run --gpus all -v /ssd/dongzhenheng/LLM/Qwen-14B-Chat:/data/shared/Qwen/Qwen-Chat/ -d qwenllm/qwen:cu121_V1
#查看容器id
docker ps
#根据容器id进入容器
docker exec -it 容器id bash
#cp 进去data
docker cp /data/zhenhengdong/WORk/Fine-tuning/Qwen-14B/Datasets/data_1.json b81df07711cf:/data/shared/Qwen
#修改checkpoint.py,注释掉waring。避免在运行的时候出现很长的wraing
docker cp /data/zhenhengdong/WORk/Fine-tuning/Qwen-14B/Codes/checkpoint.py b81df07711cf:/usr/local/lib/python3.8/dist-packages/torch/utils
#修改finetune_lora_single_gpu.sh 中的参数
docker cp /data/zhenhengdong/WORk/Fine-tuning/Qwen-14B/Codes/finetune_lora_single_gpu_1.sh  b81df07711cf:/data/shared/Qwen/finetune
# 运行 因为在finetune_lora_single_gpu.sh 中指定了模型地址和数据地址,所以在运行的时候也可以不用指定 -d 和 -m了
bash finetune/finetune_lora_single_gpu_1.sh  -m /data/shared/Qwen/Qwen-Chat -d /data/shared/Qwen/data_1.json
 

        微调结束后,会生成output_qwen的文件夹。

【深度学习】微调Qwen1.8B,深度学习,人工智能

        里面是模型微调时保存的模型。

【深度学习】微调Qwen1.8B,深度学习,人工智能

         微调过程如下:

【深度学习】微调Qwen1.8B,深度学习,人工智能

微调结束后,可以选择checkpoint复制到容器外,再调用或者merge。  

 2.4 调用

        微调之后的调用,Qwen也给出了详细示例。

【深度学习】微调Qwen1.8B,深度学习,人工智能

        在调用时需要注意更换一下adapert_config.json中的模型路径。将base_model_name_or_path换成自己微调的模型路径。

【深度学习】微调Qwen1.8B,深度学习,人工智能

from peft import AutoPeftModelForCausalLM
path_to_adapter = '/ssd/dongzhenheng/LLM/Qwen-Address/tezt'
model = AutoPeftModelForCausalLM.from_pretrained(
    path_to_adapter, # path to the output directory
    device_map="cuda:0",
    trust_remote_code=True
).eval()

2.5 合并

        合并以docker中的为例

from peft import AutoPeftModelForCausalLM

path_to_adapter = '/data/shared/Qwen/output_qwen'
model = AutoPeftModelForCausalLM.from_pretrained(
    path_to_adapter, # path to the output directory
    device_map="auto",
    trust_remote_code=True
).eval()

new_model_directory = '/data/shared/Qwen/New_model_directory'
merged_model = model.merge_and_unload()
# max_shard_size and safe serialization are not necessary. 
# They respectively work for sharding checkpoint and save the model to safetensors
merged_model.save_pretrained(new_model_directory, max_shard_size="2048MB", safe_serialization=True)

执行过程  

【深度学习】微调Qwen1.8B,深度学习,人工智能  

目录文件

【深度学习】微调Qwen1.8B,深度学习,人工智能

New_model_directory目录将包含合并后的模型参数与相关模型代码。请注意*.cu*.cpp文件没被保存,需要手动从Qwen-1_8B-Chat中复制。merge_and_unload仅保存模型,并未保存tokenizer,如有需要,请复制相关文件或使用以以下代码保存 。

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
    path_to_adapter, # path to the output directory
    trust_remote_code=True
)
tokenizer.save_pretrained(New_model_directory)

2.6 合并调用

        合并并存储模型后即可用常规方式读取新模型。文章来源地址https://www.toymoban.com/news/detail-836436.html

checkpoint_path = '/data/shared/Qwen/New_model_directory'
tokenizer = AutoTokenizer.from_pretrained(
        checkpoint_path, 
        trust_remote_code=True, resume_download=True,
    )
device_map = "auto"

model = AutoModelForCausalLM.from_pretrained(
        checkpoint_path,
        device_map=device_map,
        trust_remote_code=True,
        resume_download=True,
        bf16=True
    ).eval()

model.generation_config = GenerationConfig.from_pretrained(
        checkpoint_path, trust_remote_code=True, resume_download=True,
    )

到了这里,关于【深度学习】微调Qwen1.8B的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能深度学习

    目录 人工智能 深度学习 机器学习 神经网络 机器学习的范围 模式识别 数据挖掘 统计学习 计算机视觉 语音识别 自然语言处理 机器学习的方法 回归算法 神经网络 SVM(支持向量机) 聚类算法 降维算法 推荐算法 其他 机器学习的分类 机器学习模型的评估 机器学习的应用 机

    2024年02月22日
    浏览(58)
  • 人工智能之深度学习

    第一章 人工智能概述 1.1人工智能的概念和历史 1.2人工智能的发展趋势和挑战 1.3人工智能的伦理和社会问题 第二章 数学基础 1.1线性代数 1.2概率与统计 1.3微积分 第三章 监督学习 1.1无监督学习 1.2半监督学习 1.3增强学习 第四章 深度学习 1.1神经网络的基本原理 1.2深度学习的

    2024年02月09日
    浏览(55)
  • 人工智能、机器学习、深度学习的区别

    人工智能涵盖范围最广,它包含了机器学习;而机器学习是人工智能的重要研究内容,它又包含了深度学习。 人工智能是一门以计算机科学为基础,融合了数学、神经学、心理学、控制学等多个科目的交叉学科。 人工智能是一门致力于使计算机能够模拟、模仿人类智能的学

    2024年02月08日
    浏览(56)
  • 人工智能的深度学习如何入门

    人工智能深度学习近年来成为热门的技术领域,被广泛应用于许多领域,如自然语言处理、图像识别、机器翻译等。学习人工智能深度学习需要具备一定的数学和编程基础,但对于初学者来说,并不需要过于复杂的数学和编程知识。本文将介绍人工智能深度学习的基本概念和

    2024年03月27日
    浏览(63)
  • 深度学习:探索人工智能的前沿

    人工智能(Artificial Intelligence,简称AI)是一门研究如何使计算机能够执行通常需要人类智能的任务的领域。从早期的符号推理到现代的深度学习,人工智能经历了漫长的发展过程。 20世纪50年代,AI的奠基性工作开始,研究者们试图通过符号推理来模拟人类思维过程。然而,

    2024年01月19日
    浏览(75)
  • 一探究竟:人工智能、机器学习、深度学习

    1.1 人工智能是什么?          1956年在美国Dartmounth 大学举办的一场研讨会中提出了人工智能这一概念。人工智能(Artificial Intelligence),简称AI,是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的

    2024年02月17日
    浏览(53)
  • 12、人工智能、机器学习、深度学习的关系

    很多年前听一个机器学习的公开课,在QA环节,一个同学问了老师一个问题“ 机器学习和深度学习是什么关系 ”? 老师先没回答,而是反问了在场的同学,结果问了2-3个,没有人可以回答的很到位,我当时也是初学一脸懵,会场准备的小礼品也没有拿到。 后来老师解释“机

    2024年02月05日
    浏览(72)
  • 机器学习、人工智能、深度学习三者的区别

    目录 1、三者的关系 2、能做些什么 3、阶段性目标 机器学习、人工智能(AI)和深度学习之间有密切的关系,它们可以被看作是一种从不同层面理解和实现智能的方法。 人工智能(AI):人工智能是一门研究如何使计算机能够模仿人类智能的学科。它涵盖了各种技术和方法,

    2024年02月14日
    浏览(61)
  • 机器学习入门教学——人工智能、机器学习、深度学习

    1、人工智能 人工智能相当于人类的代理人,我们现在所接触到的人工智能基本上都是弱AI,主要作用是正确解释从外部获得的数据,并对这些数据加以学习和利用,以便灵活的实现特定目标和任务。 例如: 阿尔法狗、智能汽车 简单来说: 人工智能使机器像人类一样进行感

    2024年02月09日
    浏览(91)
  • 人工智能、机器学习与深度学习之间的关系

    图1. AI、ML与DL关系图 在我们深入研究机器学习和深度学习之前,让我们快速浏览一下它们所属的分支:人工智能(AI)。简而言之,人工智能是一个将计算机科学与大量数据相结合以帮助解决问题的领域。人工智能有许多不同的用例。图像识别,图像分类,自然语言处理,语音

    2024年01月18日
    浏览(63)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包