基于深度学习的红肉新鲜过期判决系统matlab仿真

这篇具有很好参考价值的文章主要介绍了基于深度学习的红肉新鲜过期判决系统matlab仿真。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 系统构成与流程

4.2 模型训练与优化

5.算法完整程序工程


1.算法运行效果图预览

基于深度学习的红肉新鲜过期判决系统matlab仿真,MATLAB算法开发,# 深度学习,深度学习,matlab,人工智能,红肉新鲜过期判决

基于深度学习的红肉新鲜过期判决系统matlab仿真,MATLAB算法开发,# 深度学习,深度学习,matlab,人工智能,红肉新鲜过期判决

基于深度学习的红肉新鲜过期判决系统matlab仿真,MATLAB算法开发,# 深度学习,深度学习,matlab,人工智能,红肉新鲜过期判决

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

.....................................................................

% 对测试集进行分类预测
[Predicted_Label, Probability] = classify(net, Resized_Testing_Dataset);
% 计算分类准确率
accuracy = mean(Predicted_Label == Testing_Dataset.Labels);
% 随机选择一些图像进行可视化
index = randperm(numel(Resized_Testing_Dataset.Files), 18);
figure

for i = 1:6
    subplot(2,3,i)
    I = readimage(Testing_Dataset, index(i));% 从测试数据集中读取图像
    imshow(I)% 预测的标签
    label = Predicted_Label(index(i));label
 
    if double(label) == 1
       title(['新鲜肉']);
    end
    if double(label) == 2
       title(['过期肉']);
    end
end


figure
for i = 1:6
    subplot(2,3,i)
    I = readimage(Testing_Dataset, index(i+6));% 从测试数据集中读取图像
    imshow(I)% 预测的标签
    label = Predicted_Label(index(i+6));label
 
    if double(label) == 1
       title(['新鲜肉']);
    end
    if double(label) == 2
       title(['过期肉']);
    end
end


figure
for i = 1:6
    subplot(2,3,i)
    I = readimage(Testing_Dataset, index(i+12));% 从测试数据集中读取图像
    imshow(I)% 预测的标签
    label = Predicted_Label(index(i+12));label
 
    if double(label) == 1
       title(['新鲜肉']);
    end
    if double(label) == 2
       title(['过期肉']);
    end
end
112

4.算法理论概述

       随着生活水平的提高,人们对食品安全和质量的关注度日益增加。红肉作为重要的食品来源,其新鲜度的检测对于保障消费者权益和食品安全至关重要。传统的红肉新鲜度检测方法多依赖于人工感官评估或化学分析,这些方法存在主观性强、耗时耗力等缺点。近年来,深度学习技术的迅猛发展,为红肉新鲜度的自动化、智能化检测提供了新的解决方案。

       基于深度学习的红肉新鲜过期判决系统,通过采集红肉样本的图像数据,利用深度学习算法对图像进行特征提取和分类,从而实现对红肉新鲜度的自动化检测。该系统主要包括图像采集模块、预处理模块、深度学习模型训练模块和判决输出模块。

4.1 系统构成与流程

  1. 数据收集: 收集包含各类红肉在不同新鲜程度下的高分辨率图像样本,标记每个样本的新鲜度等级或剩余保质期。

  2. 预处理: 对图像进行标准化、缩放、去噪、增强等预处理操作,以提高深度学习模型的性能。

  3. 特征提取: 使用深度卷积神经网络(CNN)从图像中自动提取特征表示。

  4. 时序建模(如果适用): 若考虑时间序列变化,可以采用循环神经网络(RNN),如长短时记忆网络(LSTM)或GRU,结合连续的检测结果建立肉类新鲜度随时间演变的模型:

基于深度学习的红肉新鲜过期判决系统matlab仿真,MATLAB算法开发,# 深度学习,深度学习,matlab,人工智能,红肉新鲜过期判决

     5.新鲜度判决层: 通过全连接层(FC)映射到一个实数输出,该输出代表预测的新鲜度指标或者过期概率:

基于深度学习的红肉新鲜过期判决系统matlab仿真,MATLAB算法开发,# 深度学习,深度学习,matlab,人工智能,红肉新鲜过期判决

     6.损失函数与优化: 使用适当的损失函数(如均方误差MSE或交叉熵Loss)衡量预测值与真实标签之间的差距,并通过反向传播算法调整模型参数:

基于深度学习的红肉新鲜过期判决系统matlab仿真,MATLAB算法开发,# 深度学习,深度学习,matlab,人工智能,红肉新鲜过期判决

     7.评估与部署: 在验证集上评估模型性能,选择最佳模型并部署至实际应用环境。

4.2 模型训练与优化

1. 数据集准备

        为了训练深度学习模型,需要准备大量的标注数据集。数据集应包含不同新鲜度的红肉图像,并对每张图像进行标注(如新鲜、次新鲜、不新鲜等)。数据集还需要进行划分,通常分为训练集、验证集和测试集。

2. 模型训练

       模型训练过程中需要选择合适的优化器(如SGD、Adam等)和学习率调整策略(如固定学习率、学习率衰减等)。训练过程中需要监控模型在验证集上的表现,并根据表现调整模型参数和超参数。训练完成后,保存最优模型的参数供后续使用。

3. 模型评估与优化

        模型评估主要采用准确率、精确率、召回率和F1分数等指标。通过对比模型在测试集上的表现与真实标签的差异,可以评估模型的性能。针对模型性能不足的问题,可以采取数据增强、模型融合、网络结构调整等优化措施进行改进。

       经过训练的深度学习模型可以对新输入的红肉图像进行新鲜度分类。系统将分类结果以可视化的方式展示给用户,如通过不同颜色的标签或分数表示不同新鲜度等级。此外,系统还可以将分类结果与其他信息管理系统进行集成,实现红肉新鲜度的自动化监控和管理。

5.算法完整程序工程

OOOOO

OOO

O文章来源地址https://www.toymoban.com/news/detail-836599.html

到了这里,关于基于深度学习的红肉新鲜过期判决系统matlab仿真的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 竞赛选题 基于深度学习的人脸识别系统

    🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的人脸识别系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 基于传统图像处理和机器学习技术的人脸识别技术,其中的流程都是一样的。 机器

    2024年02月07日
    浏览(81)
  • 基于树莓派构建深度学习语音识别系统

    +v hezkz17进数字音频系统研究开发交流答疑裙   1 Linux 音频框架如何做语音识别系统?   要在Linux上构建一个语音识别系统,可以使用以下步骤和工具: 安装音频框架:在Linux上运行语音识别系统需要一个适当的音频框架。常见的选择包括 ALSA(Advanced Linux Sound Architecture)和

    2024年02月15日
    浏览(51)
  • python基于深度学习的水果识别系统

    具体实现分为以下几个步骤: 数据集准备:从互联网上采集水果图片,并将其划分成训练集、验证集和测试集,以便用来训练和测试模型。 模型构建:使用 PyTorch 来构建深度学习模型,常用的有 AlexNet、VGG、ResNet 等。根据实验情况,可以选择不同的模型。 训练模型:使用准

    2024年02月07日
    浏览(46)
  • 毕业设计-基于深度学习的垃圾分类系统

    目录 前言 课题背景和意义 实现技术思路 一、深度学习理论及技术基础 二、基于特征融合和注意力机制的垃圾检测算法 三、多目标垃圾视频追踪算法 实现效果图样例 最后     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边

    2024年02月04日
    浏览(53)
  • 大数据深度学习:基于Tensorflow深度学习卷积神经网络CNN算法垃圾分类识别系统

    随着社会的发展和城市化进程的加速,垃圾分类已经成为了环境保护和可持续发展的重要课题。然而,传统的垃圾分类方法通常依赖于人工识别,效率低下且易出错。因此,本项目旨在利用大数据和深度学习技术,构建一个基于 TensorFlow 深度学习的神经网络 CNN(Convolutional

    2024年04月14日
    浏览(108)
  • 毕业设计-基于深度学习的图像文字识别系统

    目录 前言 课题背景和意义 实现技术思路 一、基本原理 二、基于深度学习的图像文字识别技术 三、总结 实现效果图样例 最后     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校

    2024年02月05日
    浏览(62)
  • 毕业设计-基于深度学习的智能车牌识别系统

    目录 前言 课题背景和意义 实现技术思路 一、车牌识别的一般流程 二、智能车牌识别系统的设计思路 三、基于深度学习的智能车牌识别系统的实现 四、智能车牌识别系统的训练与测试 五、总结 实现效果图样例 最后     📅大四是整个大学期间最忙碌的时光,一边要忙着备考

    2024年02月06日
    浏览(73)
  • 人工智能|深度学习——基于对抗网络的室内定位系统

    基于CSI的工业互联网深度学习定位.zip资源-CSDN文库 室内定位技术是工业互联网相关技术的关键一环。 该技术旨在解决于室外定位且取得良好效果的GPS由于建筑物阻挡无法应用于室内的问题 。实现室内定位技术,能够在真实工业场景下实时追踪和调配人员并做到对自动化生产

    2024年02月20日
    浏览(45)
  • 基于深度学习的农作物病虫害识别系统

    今天向大家介绍一个帮助往届学生完成的毕业设计项目, 基于深度学习的农作物病虫害识别系统 。 及时、准确地诊断植物病害,对于防止农业生产的损失和农产品的损失或减少具有重要作用。为了解决这类问题,可以使用基于机器学习的方法。近年来,在图像处理中应用尤

    2024年02月04日
    浏览(47)
  • 基于 Python 深度学习的车辆特征分析系统,附源码

    博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w+、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅 文末获取源码联系 🍅 👇🏻 精彩专栏推荐订阅👇🏻 不然下次找不到哟 2022-2024年最全的计算机软件毕业设计选

    2024年02月20日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包