AI识鸟,基于YOLOv5【n/s/m/l/x】全系列参数模型开发构建工业野外场景下鸟类检测识别分析系统

这篇具有很好参考价值的文章主要介绍了AI识鸟,基于YOLOv5【n/s/m/l/x】全系列参数模型开发构建工业野外场景下鸟类检测识别分析系统。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

之前无意间看到一个公司专门是做鸟类识别的,据说已经积累了大量的行业领域数据集且技术已经深耕好多年了,有幸体验过实际的产品感觉还是很强大的,这里后面我就想着能够自己去基于目标检测模型来开发构建自己的鸟类检测识别分析系统。

首先看下实例效果,如下所示:

yolov5,YOLO

这里构建了包含20种鸟类的数据集,实例数据如下所示:

yolov5,YOLO

yolov5,YOLO

本文是选择的是YOLOv5算法模型来完成本文项目的开发构建。相较于前两代的算法模型,YOLOv5可谓是集大成者,达到了SOTA的水平,下面简单对v3-v5系列模型的演变进行简单介绍总结方便对比分析学习:
【YOLOv3】
YOLOv3(You Only Look Once version 3)是一种基于深度学习的快速目标检测算法,由Joseph Redmon等人于2018年提出。它的核心技术原理和亮点如下:
技术原理:
YOLOv3采用单个神经网络模型来完成目标检测任务。与传统的目标检测方法不同,YOLOv3将目标检测问题转化为一个回归问题,通过卷积神经网络输出图像中存在的目标的边界框坐标和类别概率。
YOLOv3使用Darknet-53作为骨干网络,用来提取图像特征。检测头(detection head)负责将提取的特征映射到目标边界框和类别预测。
亮点:
YOLOv3在保持较高的检测精度的同时,能够实现非常快的检测速度。相较于一些基于候选区域的目标检测算法(如Faster R-CNN、SSD等),YOLOv3具有更高的实时性能。
YOLOv3对小目标和密集目标的检测效果较好,同时在大目标的检测精度上也有不错的表现。
YOLOv3具有较好的通用性和适应性,适用于各种目标检测任务,包括车辆检测、行人检测等。
【YOLOv4】
YOLOv4是一种实时目标检测模型,它在速度和准确度上都有显著的提高。相比于其前一代模型YOLOv3,YOLOv4在保持较高的检测精度的同时,还提高了检测速度。这主要得益于其采用的CSPDarknet53网络结构,主要有三个方面的优点:增强CNN的学习能力,使得在轻量化的同时保持准确性;降低计算瓶颈;降低内存成本。YOLOv4的目标检测策略采用的是“分而治之”的策略,将一张图片平均分成7×7个网格,每个网格分别负责预测中心点落在该网格内的目标。这种方法不需要额外再设计一个区域提议网络(RPN),从而减少了训练的负担。然而,尽管YOLOv4在许多方面都表现出色,但它仍然存在一些不足。例如,小目标检测效果较差。此外,当需要在资源受限的设备上部署像YOLOv4这样的大模型时,模型压缩是研究人员重新调整较大模型所需资源消耗的有用工具。
优点:
速度:YOLOv4 保持了 YOLO 算法一贯的实时性,能够在检测速度和精度之间实现良好的平衡。
精度:YOLOv4 采用了 CSPDarknet 和 PANet 两种先进的技术,提高了检测精度,特别是在检测小型物体方面有显著提升。
通用性:YOLOv4 适用于多种任务,如行人检测、车辆检测、人脸检测等,具有较高的通用性。
模块化设计:YOLOv4 中的组件可以方便地更换和扩展,便于进一步优化和适应不同场景。
缺点:
内存占用:YOLOv4 模型参数较多,因此需要较大的内存来存储和运行模型,这对于部分硬件设备来说可能是一个限制因素。
训练成本:YOLOv4 模型需要大量的训练数据和计算资源才能达到理想的性能,这可能导致训练成本较高。
精确度与速度的权衡:虽然 YOLOv4 在速度和精度之间取得了较好的平衡,但在极端情况下,例如检测高速移动的物体或复杂背景下的物体时,性能可能会受到影响。
误检和漏检:由于 YOLOv4 采用单一网络对整个图像进行预测,可能会导致一些误检和漏检现象。

【YOLOv5】
YOLOv5是一种快速、准确的目标检测模型,由Glen Darby于2020年提出。相较于前两代模型,YOLOv5集成了众多的tricks达到了性能的SOTA:
技术原理:
YOLOv5同样采用单个神经网络模型来完成目标检测任务,但采用了新的神经网络架构,融合了领先的轻量级模型设计理念。YOLOv5使用较小的骨干网络和新的检测头设计,以实现更快的推断速度,并在不降低精度的前提下提高目标检测的准确性。
亮点:
YOLOv5在模型结构上进行了改进,引入了更先进的轻量级网络架构,因此在速度和精度上都有所提升。
YOLOv5支持更灵活的模型大小和预训练选项,可以根据任务需求选择不同大小的模型,同时提供丰富的数据增强扩展、模型集成等方法来提高检测精度。YOLOv5通过使用更简洁的代码实现,提高了模型的易用性和可扩展性。

训练数据配置文件如下:

# Dataset
path: ./dataset
train:
  - images/train
val:
  - images/test
test:
  - images/test

# Classes
names:
  0: BlackFootedAlbatross
  1: LaysanAlbatross
  2: SootyAlbatross
  3: GrooveBilledAni
  4: CrestedAuklet
  5: LeastAuklet
  6: ParakeetAuklet
  7: RhinocerosAuklet
  8: BrewerBlackbird
  9: RedwingedBlackbird
  10: RustyBlackbird
  11: YellowHeadedBlackbird
  12: Bobolink
  13: IndigoBunting
  14: LazuliBunting
  15: PaintedBunting
  16: Cardinal
  17: SpottedCatbird
  18: GrayCatbird
  19: YellowBreastedChat

实验截止目前,本文将YOLOv5系列五款不同参数量级的模型均进行了开发评测,接下来看下模型详情:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5
 
# Parameters
nc: 20  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]
  s: [0.33, 0.50, 1024]
  m: [0.67, 0.75, 1024]
  l: [1.00, 1.00, 1024]
  x: [1.33, 1.25, 1024]
 
# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]
 
# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13
 
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
 
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
 
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
 
   [[17, 20, 23], 1, Detect, [nc]],  # Detect(P3, P4, P5)
  ]

在实验训练开发阶段,所有的模型均保持完全相同的参数设置,等待训练完成后,来整体进行评测对比分析。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能.F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

yolov5,YOLO

【loss曲线】

yolov5,YOLO

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

yolov5,YOLO

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。

yolov5,YOLO

从整体实验结果对比来看:n系列的模型效果最差,被其他几款模型拉开了明显的差距,s系列的模型在60个epoch之前同样被拉开了明显的差距,随后达到了与其他几款模型相近的水准,m和l系列的模型性能相近,x系列的模型最优,略高于m和l系列的模型,考虑到计算量的问题,这里我们最终选择使用m系列的模型来作为最终的推理模型。

接下来就以m系列的模型为基准,详细看下结果详情:

【Batch实例】

yolov5,YOLO

【数据分布可视化】

yolov5,YOLO

【PR曲线】

yolov5,YOLO

【训练可视化】

yolov5,YOLO

【混淆矩阵】

yolov5,YOLO

做下来感觉还是蛮有意思的,这个跟很实际的野外场景还是有区别的,毕竟真实的野外场景下鸟类个体目标都是很小的,检测识别难度也会更大,因为没有实际条件获取到高质量的真实野外场景下的数据集,这里的实验开发数据集以实验性质为主,感兴趣的话也都可以试试看!

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

单个模型的训练结果默认YOLOv5s

全系列五个模型的训练结果总集文章来源地址https://www.toymoban.com/news/detail-836761.html

到了这里,关于AI识鸟,基于YOLOv5【n/s/m/l/x】全系列参数模型开发构建工业野外场景下鸟类检测识别分析系统的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • CSDN独家|YOLOv5改进、YOLOv7改进、YOLOv8改进、YOLOX改进目录一览|YOLO改进模型全系列目录(芒果书系列) | 人工智能专家老师联袂推荐

    🔥 《芒果书》系列改进专栏内的改进文章,均包含多种模型改进方式,均适用于 YOLOv3 、 YOLOv4 、 YOLOR 、 YOLOX 、 YOLOv5 、 YOLOv7 、 YOLOv8 改进(重点)!!! 🔥 专栏创新点教程 均有不少同学反应和我说已经在自己的数据集上有效涨点啦!! 包括COCO数据集也能涨点 , 所有文

    2024年02月03日
    浏览(46)
  • 实践航拍小目标检测,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建无人机航拍场景下的小目标检测识别分析系统

    关于无人机相关的场景在我们之前的博文也有一些比较早期的实践,感兴趣的话可以自行移步阅读即可: 《deepLabV3Plus实现无人机航拍目标分割识别系统》 《基于目标检测的无人机航拍场景下小目标检测实践》 《助力环保河道水质监测,基于yolov5全系列模型【n/s/m/l/x】开发构

    2024年03月21日
    浏览(44)
  • 【Yolov8】基于C#和TensorRT部署Yolov8全系列模型

      该项目主要基于TensorRT模型部署套件,在C#平台部署Yolov8模型,包括Yolov8系列的对象检测、图像分割、姿态识别和图像分类模型,实现C#平台推理加速Yolov8模型。 完整范例代码: ​ GitHub平台:guojin-yan/Csharp_deploy_Yolov8 (github.com) ​ Gitee平台:Guojin Yan/基于Csharp部署Yolov8系列模

    2024年02月06日
    浏览(42)
  • YOLOv1-YOLOv7全系列解析汇总

    导读 目标检测Yolo算法是非常经典且应用广泛的算法,而在Yolo中,又分成了输入端、网络推理、输出层,每个部分都可以延伸出很多的优化方式,本文主要从Yolov1~v7各个版本的Backbone,Neck,Head,Tricks进行了讲解,希望对大家有帮助。 近年来YOLO系列层出不穷,更新不断,已经

    2024年02月16日
    浏览(34)
  • YOLOv8-Seg改进:轻量化改进 | 华为GhostNet再升级,全系列硬件上最优极简AI网络G_ghost | IJCV22

    🚀🚀🚀 本文改进:   巧妙引入跨层的廉价操作,减少计算量的同时减少的内存数据搬运,基于此设计了GPU版GhostNet,G-GhostNet与YOLOV8建立轻量结合 🚀🚀🚀 YOLOv8-seg创新专栏 : 学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研; 1)手把手教你如何训练YOLOv8-seg; 2)模

    2024年02月02日
    浏览(45)
  • 助力智能密集人群检测计数,基于YOLOv8全系列模型【n/s/m/l/x】开发构建通用场景下密集人群检测计数识别系统

    在一些人流量比较大的场合,或者是一些特殊时刻、时段、节假日等特殊时期下,密切关注当前系统所承载的人流量是十分必要的,对于超出系统负荷容量的情况做到及时预警对于管理团队来说是保障人员安全的重要手段,本文的主要目的是想要基于通用的数据开发构建用于

    2024年01月23日
    浏览(35)
  • FreeRTOS 全系列笔记——基于V10.4

    基于crotex-m处理器新建FreeRTOS工程 为什么使用嵌入式实时操作系统(RTOS) FreeRTOS——创建任务 FreeRTOS的任务调度和管理 FreeRTOS-内核链表数据结构 FreeRTOS-内核对时间的测量 FreeRTOS-内核中的钩子(Hook)函数 FreeRTOS-软件定时器的使用 FreeRTOS-软件定时器的实现原理 FreeRTOS-延后执行机制

    2024年02月04日
    浏览(32)
  • Nooploop空循环 基于ArduPilot开源自动驾驶仪平台(APM固件)的TOFSense/-F/-M全系列激光测距传感器应用图文教程

    自2023/7/10日起ArduPilot飞控固件开始支持深圳空循环科技有限公司的TOFSense系列产品。从Plane/Copter/Rover 4.5 开始,Ardupilot 固件添加了对 TOFSense协议的支持,用于避障和高度保持。用户如果使用低于该版本的固件需要自行将相关文件进行移植与适当修改,才能支持TOFSense,TOFSense传

    2024年02月04日
    浏览(41)
  • 【Spring框架全系列】第一个Spring程序

    🏙哈喽,大家好,我是小浪。那么从今天开始,我就要开始更新spring框架全系列的博客了;本专栏免费阅读,最好能够点个订阅,以便于后续及时收到更新信息哈!🏟 📲目录 一、为什么要学习框架? 二、什么是Spring? 三、Spring的创建和使用 一、新建一个maven项目 二、添

    2024年02月02日
    浏览(34)
  • 【Spring框架全系列】SpringBoot配置日志文件

    🍧🍧哈喽,大家好,我是小浪。那么上篇博客我们学习了SpringBoot配置文件的相关操作,本篇博客我们将学习一个新的知识点,SpringBoot日志文件。🖥🖥 📲目录 一、日志是什么,有什么作用? 二、如何看到日志文件? 三、如何自定义日志打印 1、在程序中得到⽇志对象 2、使

    2024年02月03日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包