目标检测中AP50 AP75 APs APm APl 含义

这篇具有很好参考价值的文章主要介绍了目标检测中AP50 AP75 APs APm APl 含义。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

介绍

在目标检测领域,我们经常会遇到一些评价指标,这些指标有助于衡量模型的性能。让我来解释一下这些概念:

  1. AP (Average Precision):平均精度,用于衡量目标检测模型的准确性。它考虑了不同置信度阈值下的精度,并计算出一个平均值。通常,我们使用不同的阈值(例如0.5、0.75等)来计算AP。

  2. AR (Average Recall):平均召回率,表示平均召回率。与AP类似,它也考虑了不同阈值下的召回率,并计算出平均值。

  3. AP50:在IoU(交并比)大于50%时的平均精度。

  4. AP75:在IoU大于75%时的平均精度。

  5. APs:小目标(面积小于32x32像素)的平均精度。

  6. APm:中等目标(面积介于32x32和96x96像素之间)的平均精度。

  7. APl:大目标(面积大于96x96像素)的平均精度。文章来源地址https://www.toymoban.com/news/detail-836882.html

到了这里,关于目标检测中AP50 AP75 APs APm APl 含义的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • MS COCO数据集的评价标准以及不同指标的选择推荐(AP、mAP、MS COCO、AR、@、0.5、0.75、1、目标检测、评价指标)

    目标检测模型性能衡量指标、MS COCO 数据集的评价标准以及不同指标的选择推荐 目标检测模型通过 pycocotools 在验证集上会得到 COCO 的评价列表,具体参数的含义是什么呢? PASCAL VOC Microsoft COCO(MS COCO) 在 MS COCO 数据集出来之前,目标检测基本上用的是 PASCAL VOC 数据集,现在

    2024年02月08日
    浏览(46)
  • YOLO等目标检测模型的非极大值抑制NMS和评价指标(Acc, Precision, Recall, AP, mAP, RoI)、YOLOv5中mAP@0.5与mAP@0.5:0.95的含义

    YOLOv5正负样本定义 yolov5输出有3个预测分支,每个分支的每个网格有3个anchor与之对应。 没有采用IOU最大的匹配方法,而是通过计算该bounding-box和当前层的anchor的宽高比,如果最大比例大于4(设定阈值),则比例过大,则说明匹配度不高,将该bbox过滤,在当前层认为是背景

    2024年02月03日
    浏览(48)
  • 【深度学习目标检测】七、基于深度学习的火灾烟雾识别(python,目标检测,yolov8)

    YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。 YOLO(You Only Look Once)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。 YOLOv8采用了Darknet-53作为其基础网络架构。Darknet-53是一

    2024年04月13日
    浏览(58)
  • 【深度学习】(四)目标检测——上篇

    上一章介绍了图像分类,这一章来学习一下目标检测上篇。简单来说,需要得到图像中感兴趣目标的类别信息和位置信息,相比于分类问题,难度有所提升,对图像的描述更加具体。在计算机视觉众多的技术领域中,目标检测(Object Detection)也是一项非常基础的任务,图像分

    2024年02月02日
    浏览(41)
  • 【深度学习】(五)目标检测——下篇

    上一章介绍了目标检测上篇,主要为两阶段检测的R-CNN系列。这一章来学习一下目标检测下篇。R-CNN系列算法面临的一个问题,不是端到端的模型,几个构件拼凑在一起组成整个检测系统,操作起来比较复杂。而今天介绍的YOLO算法,操作简便且速度快,效果也不错。YOLO算法是

    2024年02月02日
    浏览(38)
  • halcon脚本-深度学习【目标检测】

    本文讲解使用halcon的目标检测是使用步骤,标注工具不使用halcon提供的标注工具,而是使用各个深度学习框架都使用的labelImg工具,然后使用hde脚本以及python脚本转化为标准的halcon训练及文件 本文涉及数据标注、数据转化、训练、评估、预测几个模块。   首先我是用的是

    2024年02月10日
    浏览(44)
  • 李沐-《动手学深度学习》--02-目标检测

    a . 算法步骤 使用启发式搜索算法来选择锚框(选出多个锚框大小可能不一,需要使用Rol pooling) 使用 预训练 好的模型(去掉分类层)对每个锚框进行特征抽取(如VGG,AlexNet…) 训练一个SVM来对每个类进行分类 训练一个线性回归模型来预测边缘框偏移 b . Rol Pooling ​ 每个锚框

    2024年01月25日
    浏览(41)
  • 多尺度目标检测【动手学深度学习】

            在上篇博客《锚框【目标检测】》中,我们以输入图像的每个像素为中心,生成多个锚框。基本而言,这些锚框代表了图像不同区域的样本。然而如果以每个像素都生成的锚框,最后可能会得到太多需要计算的锚框。想象一个561×728的输入图像,如果以每个像素为

    2024年02月13日
    浏览(32)
  • 深度学习|目标检测与YOLO算法

    目标检测(object detection)是在给定的图片中精确找到物体所在位置,并标注出物体的类别。物体的尺寸变化范围很大,摆放物体的角度、姿态不确定,而且可以出现在图片任何地方,同时物体也可是多个类别的。 目标检测在多个领域中被广泛使用。例如,在无人驾驶领域,

    2024年02月04日
    浏览(46)
  • OpenCV实例(九)基于深度学习的运动目标检测(一)YOLO运动目标检测算法

    2012年,随着深度学习技术的不断突破,开始兴起基于深度学习的目标检测算法的研究浪潮。 2014年,Girshick等人首次采用深度神经网络实现目标检测,设计出R-CNN网络结构,实验结果表明,在检测任务中性能比DPM算法优越。同时,何恺明等人针对卷积神经网络(Convolutional Neura

    2024年02月13日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包