线性矩阵不等式LMI与李雅普诺夫Lyapunov稳定性

这篇具有很好参考价值的文章主要介绍了线性矩阵不等式LMI与李雅普诺夫Lyapunov稳定性。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

线性矩阵不等式(Linear Matrix Inequality,LMI)

形式为
LMI ( y ) = A 0 + A 1 y 1 + A 2 y 2 + ⋯ ≥ 0 \text{LMI}(y)=A_0+A_1y_1+A_2y_2+\cdots \geq 0 LMI(y)=A0+A1y1+A2y2+0
其中 A 0 , A 1 , A 2 , . . . A_0,A_1,A_2,... A0,A1,A2,...为对称方阵。

例子


LMI ( y ) = [ y 1 + y 2 y 2 + 1 y 1 + 1 y 3 ] , \text{LMI}(y)=\left[ \begin{matrix} y_1+y_2 & y_2+1 \\ y_1+1&y_3\end{matrix} \right], LMI(y)=[y1+y2y1+1y2+1y3],
则对应
A 0 = [ 0 1 1 0 ] , A 1 = [ 1 0 1 0 ] , A 2 = [ 1 1 0 0 ] , A 3 = [ 0 0 0 1 . ] A_0=\left[ \begin{matrix} 0 & 1 \\1&0\end{matrix} \right], A_1=\left[ \begin{matrix} 1& 0\\ 1&0\end{matrix} \right],A_2=\left[ \begin{matrix} 1 &1 \\ 0&0\end{matrix} \right],A_3=\left[ \begin{matrix} 0 & 0 \\ 0&1\end{matrix} .\right] A0=[0110],A1=[1100],A2=[1010],A3=[0001.]
随着解决线性矩阵不等式的内点法的提出、以及 MATLAB 软件中 LMI 工具箱的推出,线性矩阵不等式这一工具越来越受到人们的注意和重视。

Lyapunov稳定性

假设可以找到一个正定的Lyapunov函数 V V V(即 V > 0 V>0 V>0)且 V ˙ < 0 \dot{V}<0 V˙<0,则可以证明系统是稳定的。以线性系统为例:
x ˙ = A x + B u . \dot{x}=Ax+Bu. x˙=Ax+Bu.
假设反馈控制
u = − K x . u=-Kx. u=Kx.
取Lyapunov函数为
V ( x ) = x T P x , V(x)=x^{T}Px, V(x)=xTPx,
其中 P P P正定且对称,即 P ≻ 0 , P = P T P\succ0,P=P^{T} P0,P=PT。Lyapunov的导数为
V ˙ ( x ) = x T P x ˙ + x ˙ T P x = x T P ( A − B K ) x + x T ( A − B K ) T P x = − x T Q x , \begin{aligned} \dot{V}(x)= & x^TP\dot{x}+\dot{x}^TPx \\ =&x^TP(A-BK)x+x^T(A-BK)^TPx\\ =&-x^TQx, \end{aligned} V˙(x)===xTPx˙+x˙TPxxTP(ABK)x+xT(ABK)TPxxTQx,
其中
Q = − ( A T P + P A − P B K − K T B T P ) . Q=-(A^TP+PA-PBK-K^TB^TP). Q=(ATP+PAPBKKTBTP).
若能证明 Q ≻ 0 Q \succ 0 Q0,则该系统渐近稳定。

最优控制中常取
K = − 1 2 R − 1 B T P T , K=-\frac{1}{2}R^{-1}B^TP^T, K=21R1BTPT,
其中,前提矩阵 R R R满足 R = R T ≻ 0 R=R^T \succ 0 R=RT0 R − 1 R^{-1} R1存在且有界,于是,
Q = − ( A T P + P A − P B R − 1 B T P T ) . (1) Q=-(A^TP+PA-PBR^{-1}B^TP^T). \tag{1} Q=(ATP+PAPBR1BTPT).(1)

Schur Complement

Schur Complement可用于对一个块矩阵进行等价转换。

定义

假设一个 n × n n \times n n×n的矩阵 M M M可以写成一个块矩阵形式:
M = [ A B C D ] . M=\left[ \begin{matrix} A & B \\ C & D \end{matrix} \right]. M=[ACBD].

  1. D D D是可逆的,则 D D D M M M中的舒尔补存在且为
    A − B D − 1 C ; A-BD^{-1}C; ABD1C;

  2. A A A是可逆的,则 A A A M M M中的舒尔补存在且为
    D − C A − 1 B . D-CA^{-1}B. DCA1B.
    “来历”:对方程
    [ A B C D ] [ x y ] = [ p q ] , \left[ \begin{matrix} A & B \\ C & D \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right]=\left[ \begin{matrix} p \\ q \end{matrix} \right], [ACBD][xy]=[pq],
    使用高斯消元法,由 D D D可逆有
    ( A − B D − 1 C ) x = p − B D − 1 q . (A-BD^{-1}C)x=p-BD^{-1}q. (ABD1C)x=pBD1q.
    A A A可逆有
    ( D − C A − 1 B ) y = q − C A − 1 p . (D-CA^{-1}B)y=q-CA^{-1}p. (DCA1B)y=qCA1p.
    未知数前面的系数即为舒尔补。

Schur Complement作用/性质

  1. M M M分别变为上三角或者下三角矩阵:若 D D D可逆,则
    M = [ A B C D ] = [ I B D − 1 0 I ] [ A − B D − 1 C 0 0 D ] [ I 0 D − 1 C I ] ; M=\left[ \begin{matrix} A & B \\ C & D \end{matrix} \right]=\left[ \begin{matrix} I & BD^{-1} \\ 0 & I \end{matrix} \right]\left[ \begin{matrix} A-BD^{-1}C & 0 \\ 0 & D \end{matrix} \right]\left[ \begin{matrix} I & 0 \\ D^{-1}C & I \end{matrix} \right]; M=[ACBD]=[I0BD1I][ABD1C00D][ID1C0I];
    A A A可逆,则
    M = [ A B C D ] = [ I 0 C A − 1 I ] [ A 0 0 D − C A − 1 B ] [ I A − 1 B 0 I ] . M=\left[ \begin{matrix} A & B \\ C & D \end{matrix} \right]=\left[ \begin{matrix} I & 0\\ CA^{-1} & I \end{matrix} \right]\left[ \begin{matrix} A & 0 \\ 0 & D-CA^{-1}B \end{matrix} \right]\left[ \begin{matrix} I & A^{-1}B \\ 0 & I \end{matrix} \right]. M=[ACBD]=[ICA10I][A00DCA1B][I0A1BI].
    利用该性质可以快速求解矩阵 M M M的逆。

  2. 特殊性质:若 M M M是对称的,即
    M = [ A B B T C ] , M=\left[ \begin{matrix} A & B \\ B^T & C \end{matrix} \right], M=[ABTBC],
    C C C可逆,则有下列性质:

  3. M ≻ 0 M \succ 0 M0,则有且仅有 C ≻ 0 C \succ 0 C0 A − B C − 1 B T ≻ 0 A-BC^{-1}B^T \succ 0 ABC1BT0

  4. C ≻ 0 C \succ 0 C0,则 M ≻ 0 M \succ 0 M0有且仅有 A − B C − 1 B T ≻ 0 A-BC^{-1}B ^T\succ 0 ABC1BT0

利用Schur Complement将LMI和Lyapunov联系起来

利用舒尔补的特殊性质,式 ( 1 ) (1) (1)大于0等效为
[ − A T P − P A P B B T P T R ] ≻ 0. \left[ \begin{matrix} -A^TP-PA & PB \\ B^TP^T&R \end{matrix} \right] \succ 0. [ATPPABTPTPBR]0.
Lyapunov稳定性的判定条件转化为线性形式,从而方便用软件包数值求解。文章来源地址https://www.toymoban.com/news/detail-837042.html

到了这里,关于线性矩阵不等式LMI与李雅普诺夫Lyapunov稳定性的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 《鲁棒控制——线性矩阵不等式处理方法》(俞立)第二、三、四章学习笔记

     :非零向量,  或者的最大特征值小于0. 是凸集。(设V是数域P上的线性空间,W是V的一个非空子集,如果对W中任意两个向量a,b以及任意0=c=1,都有ca+(1-c)b  W,则W是凸集)。 ,其中是r*r维的非奇异矩阵,则称为在中的Schur补。 对给定的对称矩阵,其中是r*r维的非奇异矩阵,

    2023年04月08日
    浏览(35)
  • ADMM算法系列1:线性等式或不等式约束下可分离凸优化问题的ADMM扩展

    1 研究背景       交替方向乘数法(ADMM)最初由Glowinski和Marrocco提出,用于解决非线性椭圆问题,它已成为解决各种凸优化问题的基准算法。在方法上,可以认为ADMM算法是在经典增广拉格朗日方法(ALM)的分裂版本。它已经在非常广泛的领域找到了应用,特别是在与数据科学

    2024年02月03日
    浏览(43)
  • 马尔可夫不等式、切比雪夫不等式

    在概率论中,马尔可夫不等式给出了随机变量的非负函数大于或等于某个正常数 ϵ epsilon ϵ 的概率的上限 下图来自:Markov inequality 下图为任一分布的概率密度函数图像 图片来自:Mathematical Foundations of Computer Networking: Probability a a a 越大,阴影部分的面积越小,即概率越小 使

    2024年02月04日
    浏览(35)
  • 马尔科夫不等式和坎泰利不等式的证明

    马尔科夫不等式(Markov’s inequality) 对于随机变量 X X X ,有 P ( ∣ X ∣ ⩾ ε ) ⩽ E ∣ X ∣ k ε k , ε 0 , k ∞ Pleft( left| X right|geqslant varepsilon right) leqslant frac{Eleft| X right|^k}{varepsilon ^k},varepsilon 0,kinfty P ( ∣ X ∣ ⩾ ε ) ⩽ ε k E ∣ X ∣ k ​ , ε 0 , k ∞ 证明: P ( ∣ X ∣ ⩾ ε

    2024年02月08日
    浏览(39)
  • 优化问题----等式约束与不等式约束问题求解

    目录 先总结一波: 1. 等式约束问题求解 (1)一阶必要条件 (2)二阶充分条件 2.不等式约束问题求解 2.1 可行下降方向 2.2 KTT条件(Kuhn-Tucker条件) (1)Gordan定理 (2)Fritz John定理 (3)KTT条件  (4)KTT的一个应用实例 对于无约束极值问题,可以采用解析方法和直接方法两

    2024年02月05日
    浏览(49)
  • Hoeffing不等式

    设 X 1 , X 2 , . . . , X N X_1,X_2,...,X_N X 1 ​ , X 2 ​ , ... , X N ​ 是独立随机变量,且 X i ∈ [ a i , b i ] , i = 1 , 2 , . . . , N ; S N = ∑ i = 1 N X i X_iin[a_i,b_i],i=1,2,...,N;S_N=sum_{i=1}^NX_i X i ​ ∈ [ a i ​ , b i ​ ] , i = 1 , 2 , ... , N ; S N ​ = ∑ i = 1 N ​ X i ​ ,则对任意t0,以下不等式成立:

    2024年02月07日
    浏览(39)
  • 不等式证明(三)

    设 p , q p ,q p , q 是大于1的常数,并且 1 p + 1 q = 1 frac{1}{p}+frac{1}{q}=1 p 1 ​ + q 1 ​ = 1 .证明:对于任意的 x 0 x0 x 0 ,有 1 p x p + 1 q ≥ x frac{1}{p}x^p+frac{1}{q}geq x p 1 ​ x p + q 1 ​ ≥ x . 证明 : 设 f ( x ) = 1 p x p + 1 q − x (1) f(x)=frac{1}{p}x^p+frac{1}{q}- xtag{1} f ( x ) = p 1 ​ x p + q 1 ​

    2024年01月21日
    浏览(46)
  • 各种数学不等式

    以丹麦技术大学数学家约翰·延森(John Jensen)命名。它给出积分的凸函数值和凸函数的积分值间的关系。 是数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。 是柯西不等式的推广. 赫尔德不等式是数学分析的一条不等式,取名自奥图·赫尔德(Otto Hölder) 是德国

    2024年02月14日
    浏览(40)
  • 放缩不等式推导

    放缩不等式推导 1 )   a x x + 1 ( 1 a ≤ e , x 0 ; a ≥ e , x 0 ) ; 1) a^xx+1left(1aleq e,x0;ageq e,x0right); 1 )   a x x + 1 ( 1 a ≤ e , x 0 ; a ≥ e , x 0 ) ; p r o o f : proof: p roo f : f 01 ( x ) = a x − ( x + 1 ) ⇒ f 01 ′ ( x ) = a x ln ⁡ a − 1 f_{01}left(xright)=a^{x}-left(x+1right)Rightarrow f_{01}^{\\\'}left(xright) =

    2023年04月22日
    浏览(43)
  • 高中数学:不等式(初接高)

    最后的例题,是为了说明第三种情况,就是,不等号右边不为0时,要先进行移项操作。 将右边化为0 这样,就转化成1,2两种情况了。 补充: 不等式解法中,对于根式的转化,要考虑仔细,不能少考虑了情况,否则求出的结果就出错。 这个,也是最难的,最考验答题人的细心

    2024年01月24日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包