【OrangePi Zero2 智能家居】智能家居项目的软件实现

这篇具有很好参考价值的文章主要介绍了【OrangePi Zero2 智能家居】智能家居项目的软件实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、项目整体设计
二、项目代码的前期准备
三、实现语音监听接口
四、实现socket监听接口
五、实现烟雾报警监听接口
六、实现设备节点代码
七、实现接收消息处理接口

一、项目整体设计

整体的软件框架大致如下:
【OrangePi Zero2 智能家居】智能家居项目的软件实现,全志H616,智能家居,实现语音监听接口,实现socket监听接口,实现烟雾报警监听接口,实现设备节点代码,实现接收消息处理接口
整个项目开启4个监听线程, 分别是:

  1. 语音监听线程:用于监听语音指令, 当有语音指令过来后, 通过消息队列的方式给消息处理线程发
    送指令
  2. 网络监听线程:用于监听网络指令,当有网络指令过来后, 通过消息队列的方式给消息处理线程发
    送指令
  3. 火灾检测线程:当存在煤气泄漏或者火灾闲情时, 发送警报指令给消息处理线程
  4. 消息监听线程: 用于处理以上3个线程发过来的指令,并根据指令要求配置GPIO引脚状态,OLED
    屏显示、语音播报,还有人脸识别开门
    上述四个线程采用统一个对外接口接口,同时添加到监听链表中。

统一的监听模块接口如下:

struct control
{
	char control_name[128]; //监听模块名称
	int (*init)(void); //初始化函数
	void (*final)(void);//结束释放函数
	void *(*get)(void *arg);//监听函数,如语音监听
	void *(*set)(void *arg); //设置函数,如语音播报
	struct control *next;
};

struct control *add_device_to_ctrl_list(struct control *phead, struct control *device);

另外,被控制的设备类也统一配置接口,同时添加到设备链表中。

统一的设备类接口如下:

struct gdevice
{
	char dev_name[128]; //设备名称
	int key; //key值,用于匹配控制指令的值
	int gpio_pin; //控制的gpio引脚
	int gpio_mode; //输入输出模式
	int gpio_status; //高低电平状态
	int check_face_status; //是否进行人脸检测状态
	int voice_set_status; //是否语音语音播报
	struct gdevice *next;
};

struct gdevice *add_device_to_gdevice_list(struct gdevice *phead, struct gdevice *device);
struct gdevice *find_gdevice_by_key(struct gdevice *pdev, unsigned char key);
int set_gpio_gdevice_status(struct gdevice *pdev);

二、项目代码的前期准备

之前讲过智能分类的项目,因为会用到语音模块、OLED显示、网络模块、这些代码都可以从智能分类的项目中直接拷贝过来使用,另外添加之前准备好的人脸识别的代码 。 另外根据《项目整体设计》。再定义gdevice.h和control.h的头文件。整个目录结构如下:

pg@pg-Default-string:~/smarthome$ tree -I 3rd/ #3rd目录直接从garbage工程拷贝过来, 主要是一些依赖库和头文件, 这里就不显示
.
├── inc
│ ├── control.h
│ ├── face.h
│ ├── gdevice.h
│ ├── myoled.h
│ ├── socket.h
│ └── uartTool.h
├── Makefile
└── src
	├── face.c
	├── face.py
	├── myoled.c
	├── socket.c
	└── uartTool.c

其中 control.h代码如下:

#ifndef __CONTROL__H
#define __CONTROL__H
#include <stdlib.h>

struct control
{
	char control_name[128];
	int (*init)(void);
	void (*final)(void);
	void *(*get)(void *arg);
	void *(*set)(void *arg);
	struct control *next;
};

//头插法,用于control类链表的创建
struct control *add_device_to_ctrl_list(struct control *phead, struct control *device);
#endif

// /dev/ttyS5 115200 ip port buffer pin /dev/I2C-3

control.c 代码如下:

#include "control.h"
//头插法
struct control *add_device_to_ctrl_list(struct control *phead, struct control *device)
{
	struct control *pcontrol;
	
	if(NULL == phead){
		pcontrol = device;
		return pcontrol;
	}else{
		device->next = phead;
		phead = device;
		return phead;
	}
}

gdevice.h 代码如下:

#ifndef __GDEVICE_H
#define __GDEVICE_H

struct gdevice
{
	char dev_name[128]; //设备名称
	int key; //key值,用于匹配控制指令的值
	int gpio_pin; //控制的gpio引脚
	int gpio_mode; //输入输出模式
	int gpio_status; //高低电平状态
	int check_face_status; //是否进行人脸检测状态
	int voice_set_status; //是否语音语音播报
	struct gdevice *next;
};
#endif

gdevice.c 代码如下:

#include <wiringPi.h>
#include "gdevice.h"

//根据key值(buffer[2])查找设备节点
struct gdevice *find_gdevice_by_key(struct gdevice *pdev, unsigned char key)
{
	struct gdevice *p = NULL;
	
	if (NULL == pdev)
	{
		return NULL;
	}
	
	p = pdev;
	
	while (NULL != p)
	{
		if(p->key == key)
		{
			return p;
		}
		p = p->next;
	}
	return NULL;
}

//设置GPIO引脚状态,输入输出和高低电平
int set_gpio_gdevice_status(struct gdevice *pdev)
{
	if (NULL == pdev)
	{
		return -1;
	}
	
	if (-1 != pdev->gpio_pin)
	{
		if (-1 != pdev->gpio_mode)
		{
			pinMode(pdev->gpio_pin, pdev->gpio_mode);
		}
		
		if (-1 != pdev->gpio_status)
		{
			digitalWrite(pdev->gpio_pin, pdev->gpio_status);
		}
	}
	return 0;
}

//链表头插法
struct gdevice *add_device_to_gdevice_list(struct gdevice *phead, struct gdevice *device)
{
	struct gdevice *pgdevice;
	
	if(NULL == phead){
		pgdevice = device;
		return pgdevice;
	}else{
		device->next = phead;
		phead = device;
		return phead;
	}
}

Makefile 修改后内容如下:

CC := aarch64-linux-gnu-gcc
SRC := $(shell find src -name "*.c")
INC := ./inc \
		./3rd/usr/local/include \
		./3rd/usr/include \
		./3rd/usr/include/python3.10 \
		./3rd/usr/include/aarch64-linux-gnu/python3.10 \
		./3rd/usr/include/aarch64-linux-gnu
		
OBJ := $(subst src/,obj/,$(SRC:.c=.o))

TARGET=obj/smarthome

CFLAGS := $(foreach item, $(INC),-I$(item)) # -I./inc -I./3rd/usr/local/include
LIBS_PATH := ./3rd/usr/local/lib \
			./3rd/lib/aarch64-linux-gnu \
			./3rd/usr/lib/aarch64-linux-gnu \
			./3rd/usr/lib/python3.10 \
							#L
							
LDFLAGS := $(foreach item, $(LIBS_PATH),-L$(item)) # -L./3rd/usr/local/libs
LIBS := -lwiringPi -lpython3.10 -pthread -lexpat -lz -lcrypt
obj/%.o:src/%.c
	mkdir -p obj
	$(CC) -o $@ -c $< $(CFLAGS)
	
$(TARGET) :$(OBJ)
	$(CC) -o $@ $^ $(CFLAGS) $(LDFLAGS) $(LIBS)
	
compile : $(TARGET)

clean:
	rm $(TARGET) obj $(OBJ) -rf
	
debug:
	echo $(CC)
	echo $(SRC)
	echo $(INC)
	echo $(OBJ)
	echo $(TARGET)
	echo $(CFLAGS)
	echo $(LDFLAGS)
	echo $(LIBS)
	
.PHONY: clean compile debug

三、实现语音监听接口

语音监听模块会借助消息队列进行消息的传递,因此先实现消息队列的接口 msg_queque.c:

#include <stdio.h>
#include "msg_queue.h"

#define QUEQUE_NAME "/mq_queue"

mqd_t msg_queue_create(void)
{
	//创建消息队列
	mqd_t mqd = -1;
	struct mq_attr attr;
	attr.mq_flags = 0;
	attr.mq_maxmsg = 10;
	attr.mq_msgsize = 256;
	attr.mq_curmsgs = 0;
	
	mqd = mq_open(QUEQUE_NAME, O_CREAT | O_RDWR, 0666, &attr);
	printf("%s| %s |%d: mqd = %d\n",__FILE__, __func__, __LINE__, mqd);
	
	return mqd;
}

void msg_queue_final(mqd_t mqd)
{
	if (-1 != mqd){
		mq_close(mqd);
		mq_unlink(QUEQUE_NAME);
		mqd = -1;
	}
}

int send_message(mqd_t mqd, void *msg, int msg_len)
{
	int byte_send = -1;
	
	byte_send = mq_send(mqd, (char *)msg, msg_len, 0);
	
	return byte_send;
}

msg_queue.h 头文件定义:

#ifndef __MSG_QUEQUE_H
#define __MSG_QUEQUE_H

#include <mqueue.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>

mqd_t msg_queue_create(void);
void msg_queue_final(mqd_t mqd);
int send_message(mqd_t mqd, void *msg, int msg_len);

#endif

根据control.h头文件的定义,实现语音监听接口

首先定义全局变量用于mqd句柄和struct control链表的传递 global.h 代码

#ifndef __GLOBAL__H
#define __GLOBAL__H

typedef struct {
	mqd_t mqd;
	struct control *ctrl_phead;
}ctrl_info_t;
#endif

紧接着语音监听接口 voice_interface.c 代码

#if 0
struct control
{
	char control_name[128]; //监听模块名称
	int (*init)(void); //初始化函数
	void (*final)(void);//结束释放函数
	void *(*get)(void *arg);//监听函数,如语音监听
	void *(*set)(void *arg); //设置函数,如语音播报
	struct control *next;
};
#endif
#include <pthread.h>
#include <stdio.h>

#include "voice_interface.h"
#include "uartTool.h"
#include "msg_queue.h"
#include "global.h"

static int serial_fd = -1;

static int voice_init(void)
{
	serial_fd = myserialOpen (SERIAL_DEV, BAUD);
	printf("%s|%s|%d:serial_fd=%d\n", __FILE__, __func__, __LINE__, serial_fd);
	
	return serial_fd;
}

static void voice_final(void)
{
	if (-1 != serial_fd)
	{
		close(serial_fd);
		serial_fd = -1;
	}
}

//接收语音指令
static void *voice_get(void *arg) // mqd应该来自于arg传参
{
	unsigned char buffer[6] = {0x00, 0x00, 0x00, 0x00, 0X00, 0x00};
	int len = 0;
	mqd_t mqd = -1;
	ctrl_info_t *ctrl_info= NULL;
	if (NULL != arg)
		ctrl_info = (ctrl_info_t *)arg;
		
	if (-1 == serial_fd)
	{
		serial_fd = voice_init();
		if (-1 == serial_fd)
		{
			pthread_exit(0);
		}
	}
	
	if(NULL != ctrl_info)
	{
		mqd = ctrl_info->mqd;
	}
	
	if ((mqd_t)-1 == mqd)
	{
		pthread_exit(0);
	}
	pthread_detach(pthread_self());
		
	printf("%s thread start\n", __func__);
	
	while(1)
	{
		len = serialGetstring(serial_fd, buffer);
		printf("%s|%s|%d:0x%x, 0x%x,0x%x, 0x%x, 0x%x,0x%x\n", __FILE__, __func__, __LINE__, buffer[0], buffer[1], buffer[2], buffer[3], buffer[4],buffer[5]);
		printf("%s|%s|%d:len=%d\n", __FILE__, __func__, __LINE__, len);
		
		if (len > 0)
		{
			if(buffer[0] == 0xAA && buffer[1] == 0x55
			&& buffer[5] == 0xAA && buffer[4] == 0x55)
			{
				printf("%s|%s|%d:send 0x%x, 0x%x,0x%x, 0x%x, 0x%x,0x%x\n", __FILE__, __func__, __LINE__, buffer[0], buffer[1], buffer[2], buffer[3], buffer[4],buffer[5]);
				send_message(mqd, buffer, len);//注意,不要用strlen去计算实际的长度
			}
			memset(buffer, 0, sizeof(buffer));
		}
	}
	pthread_exit(0);
}

//语音播报
static void *voice_set(void *arg)
{
	pthread_detach(pthread_self());
	unsigned char *buffer = (unsigned char *)arg;
	
	if (-1 == serial_fd)
	{
		serial_fd = voice_init();
		if (-1 == serial_fd)
		{
			pthread_exit(0);
		}
	}
	
	if (NULL != buffer)
	{
		serialSendstring(serial_fd, buffer, 6);
	}
	pthread_exit(0);
}

struct control voice_control = {
	.control_name = "voice",
	.init = voice_init,
	.final = voice_final,
	.get = voice_get,
	.set = voice_set,
	.next = NULL
};

struct control *add_voice_to_ctrl_list(struct control *phead)
{//头插法
	return add_interface_to_ctrl_list(phead, &voice_control);
};

voice_interface.h代码

#ifndef ___VOICE_INTERFACE_H___
#define ___VOICE_INTERFACE_H___

#include "control.h"

struct control *add_voice_to_ctrl_list(struct control *phead);

#endif

四、实现socket监听接口

参考voice接口实现socket 接口socket_interface.c代码

#include <pthread.h>

#include "socket.h"
#include "control.h"
#include "socket_interface.h"
#include "msg_queue.h"
#include "global.h"

static int s_fd = -1;

static int tcpsocket_init(void)
{
	s_fd = socket_init(IPADDR, IPPORT);
	return -1;
}

static void tcpsocket_final(void)
{
	close(s_fd);
	s_fd = -1;
}

static void* tcpsocket_get(void *arg)
{
	int c_fd = -1;
	int ret = -1;
	struct sockaddr_in c_addr;
	unsigned char buffer[BUF_SIZE];
	mqd_t mqd = -1;
	ctrl_info_t *ctrl_info= NULL;
	int keepalive = 1; // 开启TCP_KEEPALIVE选项
	int keepidle = 10; // 设置探测时间间隔为10秒
	int keepinterval = 5; // 设置探测包发送间隔为5秒
	int keepcount = 3; // 设置探测包发送次数为3次
	
	pthread_detach(pthread_self());
	printf("%s|%s|%d: s_fd = %d\n", __FILE__, __func__, __LINE__,s_fd);
	
	if (-1 == s_fd)
	{
		s_fd = tcpsocket_init();
		if (-1 == s_fd)
		{
			printf("tcpsocket_init failed\n");
			pthread_exit(0);
		}
	}
	if (NULL != arg)
		ctrl_info = (ctrl_info_t *)arg;
		
	if(NULL != ctrl_info)
	{
		mqd = ctrl_info->mqd;
	}
	if ((mqd_t)-1 == mqd)
	{
		pthread_exit(0);
	}
	memset(&c_addr,0,sizeof(struct sockaddr_in));
	
	//4. accept
	int clen = sizeof(struct sockaddr_in);
	printf("%s thread start\n", __func__);
	while (1)
	{
		c_fd = accept(s_fd,(struct sockaddr *)&c_addr,&clen);
		if (-1 == c_fd)
		{
			continue;
		}
		
		ret = setsockopt(c_fd, SOL_SOCKET, SO_KEEPALIVE, &keepalive, sizeof(keepalive)); // 设置TCP_KEEPALIVE选项
		if (ret == -1) { // 如果设置失败,打印错误信息并跳出循环
			perror("setsockopt");
			break;
		}
		
		ret = setsockopt(c_fd, IPPROTO_TCP, TCP_KEEPIDLE, &keepidle, sizeof(keepidle)); // 设置探测时间间隔选项
		if (ret == -1) { // 如果设置失败,打印错误信息并跳出循环
			perror("setsockopt");
			break;
		}
		
		ret = setsockopt(c_fd, IPPROTO_TCP, TCP_KEEPINTVL, &keepinterval,
		sizeof(keepinterval)); // 设置探测包发送间隔选项
		if (ret == -1) { // 如果设置失败,打印错误信息并跳出循环
			perror("setsockopt");
			break;
		}
		
		ret = setsockopt(c_fd, IPPROTO_TCP, TCP_KEEPCNT, &keepcount,
		sizeof(keepcount)); // 设置探测包发送次数选项
		if (ret == -1) { // 如果设置失败,打印错误信息并跳出循环
			perror("setsockopt");
			break;
		}
		
		printf("Accepted a connection from %s:%d\n", inet_ntoa(c_addr.sin_addr),
		ntohs(c_addr.sin_port)); // 打印客户端的IP地址和端口号
		
		while (1)
		{
			memset(buffer, 0, BUF_SIZE);
			ret = recv(c_fd, buffer, BUF_SIZE, 0);
			printf("%s|%s|%d: 0x%x, 0x%x,0x%x, 0x%x, 0x%x,0x%x\n", __FILE__, __func__, __LINE__, buffer[0], buffer[1], buffer[2], buffer[3], buffer[4],buffer[5]);
			if (ret > 0)
			{
				if(buffer[0] == 0xAA && buffer[1] == 0x55
				&& buffer[5] == 0xAA && buffer[4] == 0x55)
				{
					printf("%s|%s|%d:send 0x%x, 0x%x,0x%x, 0x%x, 0x%x,0x%x\n", __FILE__, __func__, __LINE__, buffer[0], buffer[1], buffer[2], buffer[3], buffer[4],buffer[5]);
					send_message(mqd, buffer, ret);//注意,不要用strlen去计算实际的长度
				}
			}
			else if ( -1 == ret || 0 == ret)
			{
				break;
			}
		}
	}
	pthread_exit(0);
}

struct control tcpsocket_control = {
	.control_name = "tcpsocket",
	.init = tcpsocket_init,
	.final = tcpsocket_final,
	.get = tcpsocket_get,
	.set = NULL,
	.next = NULL
};

struct control *add_tcpsocket_to_ctrl_list(struct control *phead)
{//头插法
	return add_interface_to_ctrl_list(phead, &tcpsocket_control);
};

socket.h 代码

#ifndef ___SOCKET_INTERFACE_H___
#define ___SOCKET_INTERFACE_H___

#include "control.h"

struct control *add_tcpsocket_to_ctrl_list(struct control *phead);

#endif

五、实现烟雾报警监听接口

同样参考voice接口实现smoke 接口smoke_interface.c代码

#include <pthread.h>
#include <wiringPi.h>
#include <stdio.h>

#include "control.h"
#include "smoke_interface.h"
#include "msg_queue.h"
#include "global.h"

#define SMOKE_PIN 6
#define SMOKE_MODE INPUT

static int smoke_init(void)
{
	printf("%s|%s|%d\n", __FILE__, __func__, __LINE__);
	pinMode(SMOKE_PIN, SMOKE_MODE);
	return 0;
}

static void smoke_final(void)
{
	//do nothing;
}

static void* smoke_get(void *arg)
{
	int status = HIGH;
	int switch_status = 0;
	unsigned char buffer[6] = {0xAA, 0x55, 0x00, 0x00, 0x55, 0xAA};
	ssize_t byte_send = -1;
	mqd_t mqd = -1;
	ctrl_info_t *ctrl_info = NULL;
	
	if (NULL != arg)
		ctrl_info = (ctrl_info_t *)arg;
		
	if(NULL != ctrl_info)
	{
		mqd = ctrl_info->mqd;
	}
	
	if ((mqd_t)-1 == mqd)
	{
		pthread_exit(0);
	}
	pthread_detach(pthread_self());
	printf("%s thread start\n", __func__);
	
	while(1)
	{
		status = digitalRead(SMOKE_PIN);
		if (LOW == status)
		{
			buffer[2] = 0x45;
			buffer[3] = 0x00;
			switch_status = 1;
			printf("%s|%s|%d:send 0x%x, 0x%x,0x%x, 0x%x, 0x%x,0x%x\n", __FILE__, __func__, __LINE__, buffer[0], buffer[1], buffer[2], buffer[3], buffer[4],buffer[5]);
			byte_send = mq_send(mqd, buffer, 6, 0);
			if (-1 == byte_send)
			{
				continue;
			}
		}
		else if (HIGH == status && 1 == switch_status)
		{
			buffer[2] = 0x45;
			buffer[3] = 0x01;
			switch_status = 0;
			printf("%s|%s|%d:send 0x%x, 0x%x,0x%x, 0x%x, 0x%x,0x%x\n", __FILE__, __func__, __LINE__, buffer[0], buffer[1], buffer[2], buffer[3], buffer[4],buffer[5]);
			byte_send = mq_send(mqd, buffer, 6, 0);
			
			if (-1 == byte_send)
			{
				continue;
			}
		}
		sleep(5);
	}
	pthread_exit(0);
}

struct control smoke_control = {
	.control_name = "smoke",
	.init = smoke_init,
	.final = smoke_final,
	.get = smoke_get,
	.set = NULL,
	.next = NULL
};

struct control *add_smoke_to_ctrl_list(struct control *phead)
{//头插法
	return add_interface_to_ctrl_list(phead, &smoke_control);
};

smoke_interface.h 代码

#ifndef ___SMOKE_INTERFACE_H___
#define ___SMOKE_INTERFACE_H___

#include "control.h"

struct control *add_smoke_to_ctrl_list(struct control *phead);

#endif

六、实现设备节点代码

  1. 客厅灯设备节点
    由于消息接收处理线程需要处理各设备类外设,因此先根据gdevice.h定义,实现客厅灯设备节点代码
    lrled_gdevice.c:
#include "gdevice.h"

struct gdevice lrled_gdev = {
	.dev_name = "LV led",
	.key = 0x41,
	.gpio_pin = 2,
	.gpio_mode = OUTPUT,
	.gpio_status = HIGH,
	.check_face_status = 0,
	.voice_set_status = 0,
};

struct gdevice *add_lrled_to_gdevice_list(struct gdevice *pgdevhead)
{//头插法
	return add_device_to_gdevice_list(pgdevhead, &lrled_gdev);
};

lrled_gdevice.h 代码如下:

#ifndef __LRLED_GDEVICE_H
#define __LRLED_GDEVICE_H

struct gdevice *add_lrled_to_gdevice_list(struct gdevice *pgdevhead);

#endif
  1. 卧室灯设备节点
    卧室灯设备节点代码bled_gdevice.c:
#include "gdevice.h"

struct gdevice bled_gdev = {
	.dev_name = "BR led",
	.key = 0x42,
	.gpio_pin = 5,
	.gpio_mode = OUTPUT,
	.gpio_status = HIGH,
	.check_face_status = 0,
	.voice_set_status = 0,
};

struct gdevice *add_bled_to_gdevice_list(struct gdevice *pgdevhead)
{//头插法
	return add_device_to_gdevice_list(pgdevhead, &bled_gdev);
};

bled_gdevice.h 代码如下:

#ifndef __BLED_GDEVICE_H
#define __BLED_GDEVICE_H

struct gdevice *add_bled_to_gdevice_list(struct gdevice *pgdevhead);

#endif
  1. 实现风扇设备节点代码
    实现风扇设备节点代码fan_gdevice.c:
#include "gdevice.h"

struct gdevice gdevice_fan = {
	.dev_name = "fan",
	.key = 0x43,
	.gpio_pin = 7,
	.gpio_mode = OUTPUT,
	.gpio_status = LOW,
	.check_face_status = 0,
	.voice_set_status = 0,
	.next = NULL
};

struct gdevice *add_fan_to_gdevice_list(struct gdevice *phead)
{
	return add_device_to_gdevice_list(phead, &gdevice_fan);
}

fan_gdevice.h 代码如下:

#ifndef __FAN_GDEVICE_H
#define __FAN_GDEVICE_H

struct gdevice *add_fan_to_gdevice_list(struct gdevice *pgdevhead);

#endif
  1. 蜂鸣器设备节点
    蜂鸣器设备节点代码beep_gdevice.c:
#include "gdevice.h"

struct gdevice beep_gdev = {
	.dev_name = "beep",
	.key = 0x45,
	.gpio_pin = 9,
	.gpio_mode = OUTPUT,
	.gpio_status = HIGH,
	.check_face_status = 0,
	.voice_set_status = 1,
};

struct gdevice *add_beep_to_gdevice_list(struct gdevice *pgdevhead)
{//头插法
	return add_device_to_gdevice_list(pgdevhead, &beep_gdev);
};

beep_gdevice.h 代码如下:

#ifndef __BEEP_GDEVICE_H
#define __BEEP_GDEVICE_H

struct gdevice *add_beep_to_gdevice_list(struct gdevice *pgdevhead);

#endif

七、实现接收消息处理接口

同样参考voice接口实现receive 接口receive_interface.c代码

#include "gdevice.h"

struct gdevice lock_gdev = {
	.dev_name = "lock",
	.key = 0x44,
	.gpio_pin = 8,
	.gpio_mode = OUTPUT,
	.gpio_status = HIGH,
	.check_face_status = 1,
	.voice_set_status = 1,
};
struct gdevice *add_lock_to_gdevice_list(struct gdevice *pgdevhead)
{//头插法
	return add_device_to_gdevice_list(pgdevhead, &lock_gdev);
};

receive.h 头文件代码文章来源地址https://www.toymoban.com/news/detail-837086.html

#ifndef ___RECEIVE_INTERFACE_H___
#define ___RECEIVE_INTERFACE_H___

#include "control.h"

struct control *add_receive_to_ctrl_list(struct control *phead);

#endif

到了这里,关于【OrangePi Zero2 智能家居】智能家居项目的软件实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Orangepi Zero2 全志H616】驱动串口实现Tik Tok—VUI(语音交互)

    一、编程实现语音和开发板通信 wiringpi库源码 demo.c 二、基于前面串口的代码修改实现 uartTool.h uartTool.c uartTest.c 三、ADB adb控制指令 四、手机接入Linux热拔插相关 a. 把手机接入开发板 b. 安装adb工具,在终端输入adb安装指令: sudo apt-get install adb c. dmeg能查看到手机接入的信息,

    2024年02月21日
    浏览(21)
  • 【Orangepi Zero2 全志H616】驱动舵机控制 / Linux定时器(signal、setitimer)

    一、SG90舵机开发 舵机基本介绍 二、Linux定时器 signal 函数 setitimer 函数原型 signal、setitimer函数API调用 三、舵机 软件PWM实现 如下图所示,最便宜的舵机sg90,常用三根或者四根接线,黄色为PWM信号控制用处: 垃圾桶项目开盖用、智能小车的全比例转向、摄像头云台、机械臂等

    2024年02月05日
    浏览(23)
  • 基于STM32+ESP8266+FreeRTOS+安卓App上位机+MQTT连接OneNET的智能家居项目(软件开源篇附百度网盘链接)

      本篇文章主要是分享智能家居项目中的下位机STM32+FreeRTOS的代码部分。以下是项目最终的效果 stm32 esp8266 语音控制智能家居_哔哩哔哩_bilibili   另外附上main函数中的部分代码,完整代码会在文章末尾放上百度网盘链接,可以自行下载。 链接:https://pan.baidu.com/s/1IS-OMLy2_pyWyM

    2024年02月08日
    浏览(21)
  • Linux MQTT智能家居项目(智能家居界面布局)

    1.选择工程名称和项目保存路径 2.选择QWidget 3.添加保存图片的资源文件: 在工程目录下添加Icon文件夹保存图片: 将文件放入目录中: 将图片添加进入资源文件中: 这里我们一共显示4个界面:LED控制界面,温度湿度显示界面,光照强度显示界面,摄像头监测界面。 所以这里

    2024年02月13日
    浏览(22)
  • 项目名称:智能家居边缘网关项目

    软件环境: C语言 硬件环境: STM32G030C8TX单片机开发板 开发工具: Linux平台GCC交叉编译环境以及ukeil   边缘网关是部署在网络边缘侧的网关,通过网络联接、协议转换等功能联接物理和数字世界,提供轻量化的联接管理、实时数据分析及应用管理功能。比较常见的就是智能家居中

    2024年02月16日
    浏览(25)
  • 人工智能在智能家居安全系统软件中的人脸识别应用

    作者:禅与计算机程序设计艺术 《人工智能在智能家居安全系统软件中的人脸识别应用》 引言 1.1. 背景介绍 随着物联网技术的发展,智能家居逐渐成为人们生活中不可或缺的一部分。智能家居系统通常包括智能门锁、智能灯光、智能插座、智能窗帘、智能家电等。其中,智

    2024年02月08日
    浏览(22)
  • 智能家居APP软件开发有何优势?

           传统家居行业营销模式已经无法满足现代人多样化个性化的需求,也跟不上互联网时代的发展步伐了,很多传统家居行业都陷入了营销困境。通过智能家居APP软件开发,可以利用互联网+改造传统模式,探索新的发展模式,可以说智能家居管理系统的开发为传统家居

    2024年02月12日
    浏览(20)
  • 基于STM32智能家居控制系统软件设计及实现

    智能家居控制系统的软件设计主要使用Keil uVision5进行STM32主烧录程序的编写,主程序完成的功能主要为接收并判断语音识别模块传过来的信息,然后根据满足条件的不同进行对应的操作。例如,当语音模块传过来的信息为“打开电视”时,STM32单片将使给8550一个低电平,这样

    2024年02月02日
    浏览(23)
  • Linux嵌入式项目-智能家居

    一、资料下载  二、框架知识  三、MQTT通信协议 1、上位机APP主要工作        1.wait for msg  / while(1)订阅等待消息        2.处理消息 客户端创建了两个线程,一个线程用于发布消息,一个线程用于监听订阅消息 (那我的仿真系统也可以啊,一个发送处理数据线程。一个监听

    2024年02月16日
    浏览(22)
  • QT 项目 智能家居系统 上位机

    有哪些文件  : 头文件: 1. auidio .h  语音识别 模块 2. camera.h  人脸识别登录模块 3. chooselevelscene.h  翻金币游戏的  4. dataconfig.h   翻金币游戏的 关卡 的数据  5.entry_mode.h 登录方式的界面类 6.luck_draw.h   开心一天的界面类 7.mainsence.h 翻金币游戏的背景图片的类  8.mainwindow

    2024年02月12日
    浏览(26)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包