pytorch常见的函数梯度

这篇具有很好参考价值的文章主要介绍了pytorch常见的函数梯度。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 常见的函数导数

pytorch常见的函数梯度,机器学习,pytorch

2. 常见函数梯度

pytorch常见的函数梯度,机器学习,pytorch
pytorch常见的函数梯度,机器学习,pytorch
pytorch常见的函数梯度,机器学习,pytorch
pytorch常见的函数梯度,机器学习,pytorch
pytorch常见的函数梯度,机器学习,pytorch文章来源地址https://www.toymoban.com/news/detail-837430.html

到了这里,关于pytorch常见的函数梯度的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习笔记之优化算法(十七)梯度下降法在强凸函数的收敛性分析

    上一节介绍并证明了: 梯度下降法 在 强凸函数 上的收敛速度满足 Q mathcal Q Q -线性收敛 。 本节将介绍:在 更强 的条件下:函数 f ( ⋅ ) f(cdot) f ( ⋅ ) 在其定义域内 二阶可微 , 梯度下降法 在 f ( ⋅ ) f(cdot) f ( ⋅ ) 上的收敛速度存在什么样的结论。 关于 梯度下降法 在

    2024年02月12日
    浏览(49)
  • 机器学习笔记之优化算法(十六)梯度下降法在强凸函数上的收敛性证明

    本节将介绍: 梯度下降法 在 强凸函数 上的收敛性,以及 证明过程 。 凸函数与强凸函数 关于 凸函数 的定义使用 数学符号 表示如下: ∀ x 1 , x 2 ∈ R n , ∀ λ ∈ ( 0 , 1 ) ⇒ f [ λ ⋅ x 2 + ( 1 − λ ) ⋅ x 1 ] ≤ λ ⋅ f ( x 2 ) + ( 1 − λ ) ⋅ f ( x 1 ) forall x_1,x_2 in mathbb R^n, forall

    2024年02月11日
    浏览(41)
  • python机器学习(五)逻辑回归、决策边界、代价函数、梯度下降法实现线性和非线性逻辑回归

    线性回归所解决的问题是把数据集的特征传入到模型中,预测一个值使得误差最小,预测值无限接近于真实值。比如把房子的其他特征传入到模型中,预测出房价, 房价是一系列连续的数值,线性回归解决的是有监督的学习。有很多场景预测出来的结果不一定是连续的,我们

    2024年02月15日
    浏览(84)
  • 深度学习:Pytorch常见损失函数Loss简介

    此篇博客主要对深度学习中常用的损失函数进行介绍,并结合Pytorch的函数进行分析,讲解其用法。 L1 Loss计算预测值和真值的平均绝对误差。 L o s s ( y , y ^ ) = ∣ y − y ^ ∣ Loss(y,hat{y}) = |y-hat{y}| L oss ( y , y ^ ​ ) = ∣ y − y ^ ​ ∣ Pytorch函数: 参数: size_average (bool, optional) –

    2024年02月13日
    浏览(43)
  • PyTorch中特殊函数梯度的计算

    普通函数 对于简单的多元函数,对自变量求梯度很容易,例如: f ( x , y ) = x 2 + y 2 f(x,y)=x^2+y^2 f ( x , y ) = x 2 + y 2 则有: { ∇ x f ( x , y ) = 2 x ∇ y f ( x , y ) = 2 y left{ begin{aligned} nabla_xf(x,y)=2x\\\\ nabla_yf(x,y)=2y end{aligned} right . { ∇ x ​ f ( x , y ) ∇ y ​ f ( x , y ) ​ = 2 x = 2 y ​ 特

    2024年02月09日
    浏览(37)
  • python机器学习(三)特征预处理、鸢尾花案例--分类、线性回归、代价函数、梯度下降法、使用numpy、sklearn实现一元线性回归

    数据预处理的过程。数据存在不同的量纲、数据中存在离群值,需要稳定的转换数据,处理好的数据才能更好的去训练模型,减少误差的出现。 标准化 数据集的标准化对scikit-learn中实现的大多数机器学习算法来说是常见的要求,很多案例都需要标准化。如果个别特征或多或

    2024年02月16日
    浏览(44)
  • PyTorch:梯度计算之反向传播函数backward()

    计算图,是一种用来描述计算的有向无环图。 我们假设一个计算过程,其中 X 1 mathbf{X_1} X 1 ​ 、 W 1 mathbf{W_1} W 1 ​ 、 W 2 mathbf{W_2} W 2 ​ 、 Y mathbf{Y} Y 都是 N N N 维向量。 X 2 = W 1 X 1 mathbf{X_2} = mathbf{W_1}mathbf{X_1} X 2 ​ = W 1 ​ X 1 ​ y = W 2 X 2 mathbf{y} = mathbf{W_2}mathbf{X_2} y

    2023年04月09日
    浏览(38)
  • 【深度学习】动手学深度学习(PyTorch版)李沐 2.4.3 梯度【公式推导】

      我们可以连接一个多元函数对其所有变量的偏导数,以得到该函数的 梯度 (gradient)向量。 具体而言,设函数 f : R n → R f:mathbb{R}^{n}tomathbb{R} f : R n → R 的输入是一个 n n n 维向量 x ⃗ = [ x 1 x 2 ⋅ ⋅ ⋅ x n ] vec x=begin{bmatrix} x_1\\\\x_2\\\\···\\\\x_nend{bmatrix} x = ​ x 1 ​ x 2 ​

    2024年01月17日
    浏览(52)
  • Pytorch入门学习——快速搭建神经网络、优化器、梯度计算

    我的代码可以在我的Github找到 GIthub地址 https://github.com/QinghongShao-sqh/Pytorch_Study 因为最近有同学问我如何Nerf入门,这里就简单给出一些我的建议: (1)基本的pytorch,机器学习,深度学习知识,本文介绍的pytorch知识掌握也差不多. 机器学习、深度学习零基础的话B站​吴恩达、

    2024年02月14日
    浏览(39)
  • 机器学习梯度下降法笔记

    梯度下降法(Gradient Descent)是一种常用的优化算法,用于在机器学习和深度学习中最小化或最大化一个函数的值。在机器学习中,梯度下降法常用于调整模型的参数,使得模型能够更好地拟合训练数据。 这个优化算法的基本思想是通过迭代的方式,不断调整参数的值,使得

    2024年02月15日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包