ubuntu20.04环境下安装运行Colmap+OpenMVS

这篇具有很好参考价值的文章主要介绍了ubuntu20.04环境下安装运行Colmap+OpenMVS。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、前言

  我创作这篇博客的初衷是因为我在ubuntu20.04环境下跑Colmap+OpenMVS这个算法框架的时候踩了很多坑,一方面是网上现在很多教程都是基于Windows环境下的,而Windows环境和Linux环境相比还是有很大的差异的;二是现在网上的很多教程基本很多步骤一带而过了,而往往这些一带而过的步骤也非常容易出问题。所以我希望我的这篇分享能够帮助到大家,不想再让后面的创作者再踩这些坑了。

        特别说明:如果大家在编译中遇到任何问题,建议先直接跳转到第七章:问题合集里面看是否有相应的问题,如果有任何问题,欢迎评论区留言交流。

        在这里也有一些在这个方向上的一些优秀参考:
1、Windows环境下colmap+openmvs进行三维重建(选看):Windows环境下colmap+openmvs进行三维重建_colmap二次开发-CSDN博客

2、三维重建公开数据集(选看)

三维重建公开数据集整理(MVS篇)_三维重建数据集-CSDN博客

3、三维重建的一些方法总结(选看)

三维重建方法总结-CSDN博客

二、环境配置

        下面是我所使用的一些环境配置,谨供大家参考:

Ubuntu: 20.04

cmake :  3.24.2(无太大版本要求)

g++/gcc : 7.5.0(无太大版本要求)

git : 2.25.1(无太大版本要求)

CUDA:  11.0  (建议就用这个版本)

Ubuntu 20.04安装CUDA & CUDNN 手把手带你撸_ubuntu20.04 cuda安装-CSDN博客

OpenCV:  3.4.5(建议就用这个版本)

Ubuntu20.04安装OpenCV3.4.5(两种方法&&图文详解)-云社区-华为云

Eigen:   3.4.1(建议就用这个版本)

ubuntu20.04安装eigen3.4.0(两种方式)和ceres-solver2.0.0_ceres-solver-2.0.0-CSDN博客

boost:

sudo apt-get -y install libboost-iostreams-dev libboost-program-options-dev libboost-system-dev libboost-serialization-dev

CGAL:

sudo apt-get -y install libcgal-dev libcgal-qt5-dev

ceres-solver(这个前期在配置环境的时候不太建议大家装,在装的过程中很容易遇到版本冲突的问题,大家可以到具体要用的时候再装,建议装1.10版本及以上的)

Ubuntu20.04安装Ceres和g2o库_ubuntu20.04安装g2o-CSDN博客

vcglib:  (这个库需要放在和OpenMVS同级目录,并且下载下来之后不用编译,在后面编译OpenMVS的时候可以直接链接到这个库)

git clone https://github.com/cdcseacave/VCG.git vcglib

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

        下面附上一个查看电脑上相应库版本的链接:

查看Ubuntu中的OpenCV、Eigen、Ceres版本_查看ceres版本-CSDN博客

三、安装Colmap

        建议把环境配置好之后再开始安装

        以下这个博主的colmap安装教程写的很好,这里我就不再赘述,但是我建议先不要安装ceres-solver

        Ubuntu20.04安装Colmap_colmap ubuntu20..04-CSDN博客

四、安装Meshlab

        https://www.cnblogs.com/yibeimingyue/p/14690096.html

五、安装OpenMVS

        以下这个博主的OpenMVS安装教程写的很好:OpenMVS详细安装教程(ubuntu18.04)_openmvs安装-CSDN博客

        但是因为它这里面所用的是ubuntu18.04版本,所以建议从它的 

第一章:安装以及运行OpenMVS     

开始看起,一直看到

OpenMVS测试那里,

但是后面的数据集测试部分不建议继续看下去,根据我的测试,在这篇博客中使用的数据集并不适用于Colmap。

后面我会单独出一部分讲完整的Colmap+OpenMVS测试流程。

OpenMVS详细安装教程(ubuntu18.04)_openmvs安装-CSDN博客

六、运行测试

        在安装好Colmap 和 OpenMVS之后,就可以开始进行下面的测试了

        这里我们用的日本东北大学Tohoku University提供的公开数据集:

THU-MVS: Multi-View 3D Reconstruction Datasets

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

        选择的是彩色小狗作为测试对象,选择DOG_RGB.zip文件夹下载

6.1colmap稀疏重建

1、新建项目

        新建一个测试文件夹,比如我们这里新建的文件夹命名为project;

        把解压好的DOG_RGB数据集放到project目录里面;

        再在project文件夹里面新建一个文件夹dense;

        在project目录下鼠标右击选择在终端中打开,在终端中输入:touch dog_test.db  新建一个文件dog_test.db;

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

          ctrl+alt+t ,打开终端,输入colmap gui  , 打开colmap

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

        Fiel -> New project 

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学  

        点击Open,选择我们原来在project目录下创建的dog_test.db文件

        点击Select, 选择我们存放照片的DOG_RGB文件夹

        ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学        

        然后点击Save, 保存我们所新建的项目

2、特征提取:Processing -> Feature extraction  (因为OpenMVS重建需要针孔相机模型,所以这里我们选择PINHOLE,其他的直接用系统默认)

     ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

        点击Extract(这里如果CUDA版本不对的话可能会出现软件界面闪退的情况) ,特征提取完成之后在Colmap界面右侧会有下面这样的提示:                

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

3、特征匹配  Processing -> Feature matching -> Run

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

4、Reconstruction -> Start recpnstruction

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

5、Reconstruction -> Dense reconstruction

点击Select, 选择我们前面在project目录里面新建的dense文件夹

然后依次点击Undistortion, Stereo, Fusion

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

该过程结束之后可以看到在dense文件夹下面有以下这些文件

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

可以双击fused.ply在Meshlab里面查看重建效果(这里的话要先安装Meshlab)

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

6.2 OpenMVS稠密重建

        因为我们Colmap重建之后的点云数据没办法输入进OpenMVS直接使用,所以这里要进行一个数据格式的转换。

1、.bin 格式转换成 .txt格式

         这里我有必要说明一下,因为OpenMVS使用Colmap里面的数据进行重建的话,需要camera.txt  images.txt   point3D.txt这三个文件,而我在实际操作的过程中发现一个问题,就是在Colmap软件界面里面Fiel -> export model as txt 导出来的camera.txt  images.txt   point3D.txt这三个文件里面相机参数和图片位姿参数有可能会是空的,这里可能是Colmap软件的一个BUG。

        所以我这里着重讲一下怎么将Colmap软件输出的.bin文件格式转换成OpenMVS所需要的含有相机参数的.txt文件格式。

        首先project -> dense -> sparse , 查看是否有这三个文件:camera.bin  images.bin  point3D.bin

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学        

然后这里附上一个Colmap官方给的 bin2txt 的python代码(不用细读,会用就行):

import os
import collections
import numpy as np
import struct
import argparse
 
 
CameraModel = collections.namedtuple(
    "CameraModel", ["model_id", "model_name", "num_params"])
Camera = collections.namedtuple(
    "Camera", ["id", "model", "width", "height", "params"])
BaseImage = collections.namedtuple(
    "Image", ["id", "qvec", "tvec", "camera_id", "name", "xys", "point3D_ids"])
Point3D = collections.namedtuple(
    "Point3D", ["id", "xyz", "rgb", "error", "image_ids", "point2D_idxs"])
 
 
class Image(BaseImage):
    def qvec2rotmat(self):
        return qvec2rotmat(self.qvec)
 
 
CAMERA_MODELS = {
    CameraModel(model_id=0, model_name="SIMPLE_PINHOLE", num_params=3),
    CameraModel(model_id=1, model_name="PINHOLE", num_params=4),
    CameraModel(model_id=2, model_name="SIMPLE_RADIAL", num_params=4),
    CameraModel(model_id=3, model_name="RADIAL", num_params=5),
    CameraModel(model_id=4, model_name="OPENCV", num_params=8),
    CameraModel(model_id=5, model_name="OPENCV_FISHEYE", num_params=8),
    CameraModel(model_id=6, model_name="FULL_OPENCV", num_params=12),
    CameraModel(model_id=7, model_name="FOV", num_params=5),
    CameraModel(model_id=8, model_name="SIMPLE_RADIAL_FISHEYE", num_params=4),
    CameraModel(model_id=9, model_name="RADIAL_FISHEYE", num_params=5),
    CameraModel(model_id=10, model_name="THIN_PRISM_FISHEYE", num_params=12)
}
CAMERA_MODEL_IDS = dict([(camera_model.model_id, camera_model)
                         for camera_model in CAMERA_MODELS])
CAMERA_MODEL_NAMES = dict([(camera_model.model_name, camera_model)
                           for camera_model in CAMERA_MODELS])
 
 
def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character="<"):
    """Read and unpack the next bytes from a binary file.
    :param fid:
    :param num_bytes: Sum of combination of {2, 4, 8}, e.g. 2, 6, 16, 30, etc.
    :param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
    :param endian_character: Any of {@, =, <, >, !}
    :return: Tuple of read and unpacked values.
    """
    data = fid.read(num_bytes)
    return struct.unpack(endian_character + format_char_sequence, data)
 
 
def write_next_bytes(fid, data, format_char_sequence, endian_character="<"):
    """pack and write to a binary file.
    :param fid:
    :param data: data to send, if multiple elements are sent at the same time,
    they should be encapsuled either in a list or a tuple
    :param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
    should be the same length as the data list or tuple
    :param endian_character: Any of {@, =, <, >, !}
    """
    if isinstance(data, (list, tuple)):
        bytes = struct.pack(endian_character + format_char_sequence, *data)
    else:
        bytes = struct.pack(endian_character + format_char_sequence, data)
    fid.write(bytes)
 
 
def read_cameras_text(path):
    """
    see: src/base/reconstruction.cc
        void Reconstruction::WriteCamerasText(const std::string& path)
        void Reconstruction::ReadCamerasText(const std::string& path)
    """
    cameras = {}
    with open(path, "r") as fid:
        while True:
            line = fid.readline()
            if not line:
                break
            line = line.strip()
            if len(line) > 0 and line[0] != "#":
                elems = line.split()
                camera_id = int(elems[0])
                model = elems[1]
                width = int(elems[2])
                height = int(elems[3])
                params = np.array(tuple(map(float, elems[4:])))
                cameras[camera_id] = Camera(id=camera_id, model=model,
                                            width=width, height=height,
                                            params=params)
    return cameras
 
 
def read_cameras_binary(path_to_model_file):
    """
    see: src/base/reconstruction.cc
        void Reconstruction::WriteCamerasBinary(const std::string& path)
        void Reconstruction::ReadCamerasBinary(const std::string& path)
    """
    cameras = {}
    with open(path_to_model_file, "rb") as fid:
        num_cameras = read_next_bytes(fid, 8, "Q")[0]
        for _ in range(num_cameras):
            camera_properties = read_next_bytes(
                fid, num_bytes=24, format_char_sequence="iiQQ")
            camera_id = camera_properties[0]
            model_id = camera_properties[1]
            model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name
            width = camera_properties[2]
            height = camera_properties[3]
            num_params = CAMERA_MODEL_IDS[model_id].num_params
            params = read_next_bytes(fid, num_bytes=8*num_params,
                                     format_char_sequence="d"*num_params)
            cameras[camera_id] = Camera(id=camera_id,
                                        model=model_name,
                                        width=width,
                                        height=height,
                                        params=np.array(params))
        assert len(cameras) == num_cameras
    return cameras
 
 
def write_cameras_text(cameras, path):
    """
    see: src/base/reconstruction.cc
        void Reconstruction::WriteCamerasText(const std::string& path)
        void Reconstruction::ReadCamerasText(const std::string& path)
    """
    HEADER = "# Camera list with one line of data per camera:\n" + \
             "#   CAMERA_ID, MODEL, WIDTH, HEIGHT, PARAMS[]\n" + \
             "# Number of cameras: {}\n".format(len(cameras))
    with open(path, "w") as fid:
        fid.write(HEADER)
        for _, cam in cameras.items():
            to_write = [cam.id, cam.model, cam.width, cam.height, *cam.params]
            line = " ".join([str(elem) for elem in to_write])
            fid.write(line + "\n")
 
 
def write_cameras_binary(cameras, path_to_model_file):
    """
    see: src/base/reconstruction.cc
        void Reconstruction::WriteCamerasBinary(const std::string& path)
        void Reconstruction::ReadCamerasBinary(const std::string& path)
    """
    with open(path_to_model_file, "wb") as fid:
        write_next_bytes(fid, len(cameras), "Q")
        for _, cam in cameras.items():
            model_id = CAMERA_MODEL_NAMES[cam.model].model_id
            camera_properties = [cam.id,
                                 model_id,
                                 cam.width,
                                 cam.height]
            write_next_bytes(fid, camera_properties, "iiQQ")
            for p in cam.params:
                write_next_bytes(fid, float(p), "d")
    return cameras
 
 
def read_images_text(path):
    """
    see: src/base/reconstruction.cc
        void Reconstruction::ReadImagesText(const std::string& path)
        void Reconstruction::WriteImagesText(const std::string& path)
    """
    images = {}
    with open(path, "r") as fid:
        while True:
            line = fid.readline()
            if not line:
                break
            line = line.strip()
            if len(line) > 0 and line[0] != "#":
                elems = line.split()
                image_id = int(elems[0])
                qvec = np.array(tuple(map(float, elems[1:5])))
                tvec = np.array(tuple(map(float, elems[5:8])))
                camera_id = int(elems[8])
                image_name = elems[9]
                elems = fid.readline().split()
                xys = np.column_stack([tuple(map(float, elems[0::3])),
                                       tuple(map(float, elems[1::3]))])
                point3D_ids = np.array(tuple(map(int, elems[2::3])))
                images[image_id] = Image(
                    id=image_id, qvec=qvec, tvec=tvec,
                    camera_id=camera_id, name=image_name,
                    xys=xys, point3D_ids=point3D_ids)
    return images
 
 
def read_images_binary(path_to_model_file):
    """
    see: src/base/reconstruction.cc
        void Reconstruction::ReadImagesBinary(const std::string& path)
        void Reconstruction::WriteImagesBinary(const std::string& path)
    """
    images = {}
    with open(path_to_model_file, "rb") as fid:
        num_reg_images = read_next_bytes(fid, 8, "Q")[0]
        for _ in range(num_reg_images):
            binary_image_properties = read_next_bytes(
                fid, num_bytes=64, format_char_sequence="idddddddi")
            image_id = binary_image_properties[0]
            qvec = np.array(binary_image_properties[1:5])
            tvec = np.array(binary_image_properties[5:8])
            camera_id = binary_image_properties[8]
            image_name = ""
            current_char = read_next_bytes(fid, 1, "c")[0]
            while current_char != b"\x00":   # look for the ASCII 0 entry
                image_name += current_char.decode("utf-8")
                current_char = read_next_bytes(fid, 1, "c")[0]
            num_points2D = read_next_bytes(fid, num_bytes=8,
                                           format_char_sequence="Q")[0]
            x_y_id_s = read_next_bytes(fid, num_bytes=24*num_points2D,
                                       format_char_sequence="ddq"*num_points2D)
            xys = np.column_stack([tuple(map(float, x_y_id_s[0::3])),
                                   tuple(map(float, x_y_id_s[1::3]))])
            point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3])))
            images[image_id] = Image(
                id=image_id, qvec=qvec, tvec=tvec,
                camera_id=camera_id, name=image_name,
                xys=xys, point3D_ids=point3D_ids)
 
    return images
 
 
def write_images_text(images, path):
    """
    see: src/base/reconstruction.cc
        void Reconstruction::ReadImagesText(const std::string& path)
        void Reconstruction::WriteImagesText(const std::string& path)
    """
    if len(images) == 0:
        mean_observations = 0
    else:
        mean_observations = sum((len(img.point3D_ids) for _, img in images.items()))/len(images)
    HEADER = "# Image list with two lines of data per image:\n" + \
             "#   IMAGE_ID, QW, QX, QY, QZ, TX, TY, TZ, CAMERA_ID, NAME\n" + \
             "#   POINTS2D[] as (X, Y, POINT3D_ID)\n" + \
             "# Number of images: {}, mean observations per image: {}\n".format(len(images), mean_observations)
 
    with open(path, "w") as fid:
        fid.write(HEADER)
        for _, img in images.items():
            image_header = [img.id, *img.qvec, *img.tvec, img.camera_id, img.name]
            first_line = " ".join(map(str, image_header))
            fid.write(first_line + "\n")
 
            points_strings = []
            for xy, point3D_id in zip(img.xys, img.point3D_ids):
                points_strings.append(" ".join(map(str, [*xy, point3D_id])))
            fid.write(" ".join(points_strings) + "\n")
 
 
def write_images_binary(images, path_to_model_file):
    """
    see: src/base/reconstruction.cc
        void Reconstruction::ReadImagesBinary(const std::string& path)
        void Reconstruction::WriteImagesBinary(const std::string& path)
    """
    with open(path_to_model_file, "wb") as fid:
        write_next_bytes(fid, len(images), "Q")
        for _, img in images.items():
            write_next_bytes(fid, img.id, "i")
            write_next_bytes(fid, img.qvec.tolist(), "dddd")
            write_next_bytes(fid, img.tvec.tolist(), "ddd")
            write_next_bytes(fid, img.camera_id, "i")
            for char in img.name:
                write_next_bytes(fid, char.encode("utf-8"), "c")
            write_next_bytes(fid, b"\x00", "c")
            write_next_bytes(fid, len(img.point3D_ids), "Q")
            for xy, p3d_id in zip(img.xys, img.point3D_ids):
                write_next_bytes(fid, [*xy, p3d_id], "ddq")
 
 
def read_points3D_text(path):
    """
    see: src/base/reconstruction.cc
        void Reconstruction::ReadPoints3DText(const std::string& path)
        void Reconstruction::WritePoints3DText(const std::string& path)
    """
    points3D = {}
    with open(path, "r") as fid:
        while True:
            line = fid.readline()
            if not line:
                break
            line = line.strip()
            if len(line) > 0 and line[0] != "#":
                elems = line.split()
                point3D_id = int(elems[0])
                xyz = np.array(tuple(map(float, elems[1:4])))
                rgb = np.array(tuple(map(int, elems[4:7])))
                error = float(elems[7])
                image_ids = np.array(tuple(map(int, elems[8::2])))
                point2D_idxs = np.array(tuple(map(int, elems[9::2])))
                points3D[point3D_id] = Point3D(id=point3D_id, xyz=xyz, rgb=rgb,
                                               error=error, image_ids=image_ids,
                                               point2D_idxs=point2D_idxs)
    return points3D
 
 
def read_points3D_binary(path_to_model_file):
    """
    see: src/base/reconstruction.cc
        void Reconstruction::ReadPoints3DBinary(const std::string& path)
        void Reconstruction::WritePoints3DBinary(const std::string& path)
    """
    points3D = {}
    with open(path_to_model_file, "rb") as fid:
        num_points = read_next_bytes(fid, 8, "Q")[0]
        for _ in range(num_points):
            binary_point_line_properties = read_next_bytes(
                fid, num_bytes=43, format_char_sequence="QdddBBBd")
            point3D_id = binary_point_line_properties[0]
            xyz = np.array(binary_point_line_properties[1:4])
            rgb = np.array(binary_point_line_properties[4:7])
            error = np.array(binary_point_line_properties[7])
            track_length = read_next_bytes(
                fid, num_bytes=8, format_char_sequence="Q")[0]
            track_elems = read_next_bytes(
                fid, num_bytes=8*track_length,
                format_char_sequence="ii"*track_length)
            image_ids = np.array(tuple(map(int, track_elems[0::2])))
            point2D_idxs = np.array(tuple(map(int, track_elems[1::2])))
            points3D[point3D_id] = Point3D(
                id=point3D_id, xyz=xyz, rgb=rgb,
                error=error, image_ids=image_ids,
                point2D_idxs=point2D_idxs)
    return points3D
 
 
def write_points3D_text(points3D, path):
    """
    see: src/base/reconstruction.cc
        void Reconstruction::ReadPoints3DText(const std::string& path)
        void Reconstruction::WritePoints3DText(const std::string& path)
    """
    if len(points3D) == 0:
        mean_track_length = 0
    else:
        mean_track_length = sum((len(pt.image_ids) for _, pt in points3D.items()))/len(points3D)
    HEADER = "# 3D point list with one line of data per point:\n" + \
             "#   POINT3D_ID, X, Y, Z, R, G, B, ERROR, TRACK[] as (IMAGE_ID, POINT2D_IDX)\n" + \
             "# Number of points: {}, mean track length: {}\n".format(len(points3D), mean_track_length)
 
    with open(path, "w") as fid:
        fid.write(HEADER)
        for _, pt in points3D.items():
            point_header = [pt.id, *pt.xyz, *pt.rgb, pt.error]
            fid.write(" ".join(map(str, point_header)) + " ")
            track_strings = []
            for image_id, point2D in zip(pt.image_ids, pt.point2D_idxs):
                track_strings.append(" ".join(map(str, [image_id, point2D])))
            fid.write(" ".join(track_strings) + "\n")
 
 
def write_points3D_binary(points3D, path_to_model_file):
    """
    see: src/base/reconstruction.cc
        void Reconstruction::ReadPoints3DBinary(const std::string& path)
        void Reconstruction::WritePoints3DBinary(const std::string& path)
    """
    with open(path_to_model_file, "wb") as fid:
        write_next_bytes(fid, len(points3D), "Q")
        for _, pt in points3D.items():
            write_next_bytes(fid, pt.id, "Q")
            write_next_bytes(fid, pt.xyz.tolist(), "ddd")
            write_next_bytes(fid, pt.rgb.tolist(), "BBB")
            write_next_bytes(fid, pt.error, "d")
            track_length = pt.image_ids.shape[0]
            write_next_bytes(fid, track_length, "Q")
            for image_id, point2D_id in zip(pt.image_ids, pt.point2D_idxs):
                write_next_bytes(fid, [image_id, point2D_id], "ii")
 
 
def detect_model_format(path, ext):
    if os.path.isfile(os.path.join(path, "cameras"  + ext)) and \
       os.path.isfile(os.path.join(path, "images"   + ext)) and \
       os.path.isfile(os.path.join(path, "points3D" + ext)):
        print("Detected model format: '" + ext + "'")
        return True
 
    return False
 
 
def read_model(path, ext=""):
    # try to detect the extension automatically
    if ext == "":
        if detect_model_format(path, ".bin"):
            ext = ".bin"
        elif detect_model_format(path, ".txt"):
            ext = ".txt"
        else:
            print("Provide model format: '.bin' or '.txt'")
            return
 
    if ext == ".txt":
        cameras = read_cameras_text(os.path.join(path, "cameras" + ext))
        images = read_images_text(os.path.join(path, "images" + ext))
        points3D = read_points3D_text(os.path.join(path, "points3D") + ext)
    else:
        cameras = read_cameras_binary(os.path.join(path, "cameras" + ext))
        images = read_images_binary(os.path.join(path, "images" + ext))
        points3D = read_points3D_binary(os.path.join(path, "points3D") + ext)
    return cameras, images, points3D
 
 
def write_model(cameras, images, points3D, path, ext=".bin"):
    if ext == ".txt":
        write_cameras_text(cameras, os.path.join(path, "cameras" + ext))
        write_images_text(images, os.path.join(path, "images" + ext))
        write_points3D_text(points3D, os.path.join(path, "points3D") + ext)
    else:
        write_cameras_binary(cameras, os.path.join(path, "cameras" + ext))
        write_images_binary(images, os.path.join(path, "images" + ext))
        write_points3D_binary(points3D, os.path.join(path, "points3D") + ext)
    return cameras, images, points3D
 
 
def qvec2rotmat(qvec):
    return np.array([
        [1 - 2 * qvec[2]**2 - 2 * qvec[3]**2,
         2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
         2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]],
        [2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
         1 - 2 * qvec[1]**2 - 2 * qvec[3]**2,
         2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]],
        [2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
         2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
         1 - 2 * qvec[1]**2 - 2 * qvec[2]**2]])
 
 
def rotmat2qvec(R):
    Rxx, Ryx, Rzx, Rxy, Ryy, Rzy, Rxz, Ryz, Rzz = R.flat
    K = np.array([
        [Rxx - Ryy - Rzz, 0, 0, 0],
        [Ryx + Rxy, Ryy - Rxx - Rzz, 0, 0],
        [Rzx + Rxz, Rzy + Ryz, Rzz - Rxx - Ryy, 0],
        [Ryz - Rzy, Rzx - Rxz, Rxy - Ryx, Rxx + Ryy + Rzz]]) / 3.0
    eigvals, eigvecs = np.linalg.eigh(K)
    qvec = eigvecs[[3, 0, 1, 2], np.argmax(eigvals)]
    if qvec[0] < 0:
        qvec *= -1
    return qvec
 
 
def main():
    parser = argparse.ArgumentParser(description="Read and write COLMAP binary and text models")
    parser.add_argument("--input_model", help="path to input model folder")
    parser.add_argument("--input_format", choices=[".bin", ".txt"],
                        help="input model format", default="")
    parser.add_argument("--output_model",
                        help="path to output model folder")
    parser.add_argument("--output_format", choices=[".bin", ".txt"],
                        help="outut model format", default=".txt")
    args = parser.parse_args()
 
    cameras, images, points3D = read_model(path=args.input_model, ext=args.input_format)
 
    print("num_cameras:", len(cameras))
    print("num_images:", len(images))
    print("num_points3D:", len(points3D))
 
    if args.output_model is not None:
        write_model(cameras, images, points3D, path=args.output_model, ext=args.output_format)
 
 
if __name__ == "__main__":
    main()

        这个代码的使用方法如下:

在project目录下新建一个python文件,命名为bin_txt.py

创建好之后双击打开,将前面的python代码复制进去,点击保存

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

然后在终端中打开,

输入以下命令:

python3 bin_txt.py --input_model /home/merry/project/dense/sparse --input_format .bin --output_model /home/merry/project/dense/sparse --output_format .txt

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

解读:python3是因为里面的一些依赖可能需要最新版本的python,--input_model  后面跟的/home/merry/project/dense/sparse是.bin文件所在的绝对路径(当然也可以使用相对路径),--input_format.bin 是用来说明被转换的格式是.bin, 后面跟的/home/merry/project/dense/sparse是转换完成后的.txt文件存放的绝对路径, --output_format .txt是说明转换完成后的是.txt格式。

运行之后可以看到在/home/merry/project/dense/sparse目录下看到多出的几个含有相机参数的文件:

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

2、将前面Colmap导出的.txt 文件转换成OpenMVS能用的.mvs文件

首先进入到OpenMVS的安装目录:cd /usr/local/bin/OpenMVS(一般都是默认安装到这个目录)

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

在终端中打开, 输入以下命令:

./InterfaceCOLMAP -i /home/merry/project/dense -o /home/merry/project/dog.mvs

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

这个时候转换好的dog.mvs文件就可以在OpenMVS中打开了。

(但是切记这里输出的dog.mvs文件和dense文件有依赖关系,所以如果要移动的话建议要将这两个文件夹一起移动)

在终端中输入: ./Viewer /home/merry/project/dog.mvs

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

3、稠密重建

在进行这一步之前,可以把原始的DOG_RGB文件夹移到其他路径下

然后在终端中输入并运行:

./DensifyPointCloud -w /home/merry/project -i dog.mvs -o dog_dense.mvs

-w 设置的是图像数据的路径 -i 是输入的文件名 -o是输出的文件名

之后安静的等待几分钟

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

可以看到重建之后的界面如下:

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

虽然现在看起来很奇怪,但是我们可以一起期待一下后面完整流程走过之后的效果。

4、点云网格化

在终端输入并运行:

./ReconstructMesh -w /home/merry/project -i dog_dense.mvs -o dog_dense_recon.mvs

这里注意这个-w 后面的工作目录这里有可能会报错,不用进去/home/merry/project/dense目录里面,直接到 /home/merry/project 目录就可以

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

可以看到这里在project目录下生成了dog_dense_recon.mvs文件

可以看到,网格化之后的模型是这样的:

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

5、网格优化

在终端中输入:

./RefineMesh -w /home/merry/project -i dog_dense_recon.mvs -o dog_refine.mvs

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

因为这一步需要比较多的内存,所以有可能会出现进程被杀的情况

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

可以把电脑上其他进程先关闭,通过使用--resolution-level 1缩小处理图像的比例来解决,从而限制内存使用

终端输入:

./RefineMesh -w /home/merry/project -i dog_dense_recon.mvs -o dog_refine.mvs --resolution-level 1

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

现在就可以了,下面是进行网格优化之后的效果:

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

6、纹理贴图

在终端输入:

./TextureMesh -w /home/merry/project -i dog_refine.mvs -o dog_tex.mvs

ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

下面是纹理贴图之后的效果,还是非常不错的

 ubuntu20.04环境下安装运行Colmap+OpenMVS,linux,c++,3d,几何学

七、问题合集

        下面是我在实际操作中所遇到的一些问题,大家可以对应着看

1、因为很容易就出现CUDA版本冲突的问题,下面是一个ubuntu20.04卸载CUDA的教程

Ubuntu20.04 卸载cuda 11.0_nvidia/cuda:11.0.3-base-ubuntu20.04-CSDN博客

2、编译过程中与eigen版本冲突

fatal error: Eigen/Core: No such file or directory · Issue #14868 · opencv/opencv · GitHub

3、编译过程中报错, CUDA找不到C++17的版本号

c++ - CMake cannot set CUDA standard c++17 - Stack Overflow

4、ceres-solver版本冲突问题

Found Eigen dependency, but the version of Eigen……编译问题解决_failed to find ceres - found eigen dependency, but-CSDN博客

5、The CMAKE_C_COMPILER: /usr/local/bin/cc is not a full path to an existing compiler tool

ros - The CMAKE_C_COMPILER: /usr/local/bin/cc is not a full path to an existing compiler tool - Ask Ubuntu

6、ERROR: cannot launch node of type [image_view/image_view]: image_viewROS path [0]=/opt/ros/noetic/s

ERROR: cannot launch node of type [image_view/image_view]: image_viewROS path [0]=/opt/ros/noetic/s-CSDN博客

这一步报错其实是在安装OpenMVS时,这一步没弄好:“# /path to vcglib/vcglib"改为自己的vcglib的路径:Vcglib的父级目录/vcglib”,

7、在OpenMVS的网格优化RefineMesh环节进程被杀

RefineMesh Killed · Issue #662 · cdcseacave/openMVS · GitHub

8、gcc编译警告关于(warning: this ‘if’ clause does not guard... [-Wmisleading-indentation] if(err)之类的问题)

gcc编译警告关于(warning: this ‘if’ clause does not guard... [-Wmisleading-indentation] if(err)之类的问题)_[warning] this 'for' clause does not guard... [-wm-CSDN博客

9、openMVS执行Reconstructmesh.exe只生成ply文件,不生成mvs文件

openMVS执行Reconstructmesh.exe只生成ply文件,不生成mvs文件-CSDN博客

10、error: ‘BasicVertexPair’ does not name a type

error: ‘BasicVertexPair’ does not name a type_error: ‘basicvertexpair’ does not name a type type-CSDN博客

这一步报错主要是因为vcglib版本太高了,要使用git退回到低版本

11、Cannot set "VCG_INCLUDE_DIRS": current scope has no parent. #223

Cannot set "VCG_INCLUDE_DIRS": current scope has no parent. · Issue #223 · cnr-isti-vclab/vcglib · GitHub12、collect2: error: ld returned 1 exit status(解决方案大总结)

collect2: error: ld returned 1 exit status(解决方案大总结)-CSDN博客

如果出现这个报错,很有可能是eigen版本的问题

        以上就是本篇分享的全部内容了,感谢大家的观看,新人创作不易,如果大家喜欢的话,欢迎大家点赞、收藏+关注,后面我将会有更多三维重建相关的内容分享在这里。文章来源地址https://www.toymoban.com/news/detail-837492.html

到了这里,关于ubuntu20.04环境下安装运行Colmap+OpenMVS的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • ubuntu20.04下安装,运行关于opencv的Python程序相关库

    最初对ubuntu20.04以及opencv和python运行环境一窍不通,折磨了好几天,虚拟机重建了好几次,各个帖子的方法都跑遍了。最后终于装上,记录一下,免得搞忘。 先总结下之前的问题:推测之前的问题都在于我先入为主安装了vscode上的Python,但其实ubuntu20.04他是自带了Python3.8.10的

    2024年02月13日
    浏览(39)
  • ubuntu 20.04 4090 显卡驱动安装 深度学习环境配置

    准备工作: 换源 安装输入法:重启的步骤先不管(自选) sudo apt update sudo apt upgrade 禁用nouveau驱动(这个驱动是ubuntu开源小组逆向破解NVIDIA的开源驱动,与英伟达的原有驱动不兼容)执行完第2.3步,先不重启。 打开 软件和更新 , 选择 附加驱动,安装推荐驱动(第一个),点

    2024年02月16日
    浏览(53)
  • Ubuntu 20.04下安装配置Qt开发环境的步骤

    下面是在Ubuntu 20.04下安装配置Qt开发环境的步骤: 安装Qt Creator 在终端中输入以下命令以安装Qt Creator: 在终端中输入以下命令以安装Qt 5开发库: 安装g++和gcc编译工具 配置Qt Creator 打开Qt Creator,进入“Tools”菜单,选择“Options”,在弹出的对话框中选择“Build Run”,然后选择

    2024年02月15日
    浏览(53)
  • ubuntu20.04一键安装VScode搭建ROS编程环境

    VSCode 全称 Visual Studio Code,是微软出的一款轻量级代码编辑器,免费、开源而且功能强大。它支持几乎所有主流的程序语言的语法高亮、智能代码补全、自定义热键、括号匹配、代码片段、代码对比 Diff、GIT 等特性,支持插件扩展,并针对网页开发和云端应用开发做了优化。

    2023年04月24日
    浏览(50)
  • 【ubuntu环境配置】超详细ubuntu20.04/22.04安装nvidia驱动/CUDA/cudnn

    nvidia显卡驱动安装方式有三种:使用ubuntu附加驱动的方式;使用命令行方式安装;使用.run文件的方式进行安装, 点击菜单中的Additional Drivers选择适合的驱动版本进行安装,该方法最方便快捷(但有时会翻车) 更新所有的软件包 安装显卡驱动 详见我的另一篇博客Ubunut20.04/2

    2024年01月22日
    浏览(75)
  • Ubuntu20.04——一篇文章让你从零配置VINS_Mono环境以及运行(2023年最新)

    注:文末包含该文章涉及的所有安装包的网盘链接 零、换源(也可以先不换,后面觉得下载慢再换也行) 1、备份原来的源 2、打开源保存文件 3、换源(换其中一个就行,也可以去搜别的源) 4、更新源 一、安装git(克隆源代码)、gedit(编辑文本)、cmake、gcc、g++、build-e

    2024年02月04日
    浏览(46)
  • Ubuntu20.04的ROS环境安装ORB-SLAM3详解

    视觉SLAM实验要在Ubuntu20.04系统上使用ROS跑ORB-SLAM3,熟悉一下特征点法的SLAM,把安装过程总结记录下来。 系统 版本 ubuntu 20.04 Pangolin 0.6 Eigen 3 Opencv 4.2 usb_cam 执行命令更新源 1、ROS简介 ROS全称Robot Operating System(机器人操作系统) ROS是适用于机器人的开源元操作系统 ROS集成了大

    2023年04月21日
    浏览(74)
  • Ubuntu20.04安装pytorch(包括安装Anaconda和虚拟环境配置以及安装包spikingjelly)

    为了防止自己遗忘安装过程,同时能对需要的人提供帮助,故写该教程。 一、安装Anaconda 1.下载安装包 这里进入官网,进行下载 Anaconda | Anaconda Distribution Anaconda\\\'s open-source Distribution is the easiest way to perform Python/R data science and machine learning on a single machine. https://www.anaconda.com/pr

    2024年02月05日
    浏览(60)
  • Ubuntu64位系统(20.04、22.04)安装32位armQT4开发环境补充说明

    在一些特定场景下我们可能需要在更高版本ubuntu上(比如Ubuntu20.04、Ubuntu22.04)安装 Qt 4,维护和开发32位armQT4应用程序。 对于高版本ubuntu, 官方对Qt 4 已经不再提供维护,因此需要解决许多兼容性问题。我们前面博文《Ubuntu64位系统(v18.04)下arm32位版本(Qt4.8.6和tslib1.4)开发环境搭建

    2024年02月14日
    浏览(74)
  • 工程(十)——github代码ubuntu20.04在ROS环境运行单目和RGBD相机ORB-SLAM3稠密

    博主创建了一个科研互助群Q:772356582,欢迎大家加入讨论交流一起学习。 加稠密建图:git@github.com:huashu996/ORB_SLAM3_Dense_YOLO.git 纯净版:git@github.com:huashu996/ORB_SLAM3.git orb-slam3的整个环境配置还是比较麻烦的,先将一些坑写在前面,供大家参考和避开这些坑。 orb-slam3的配置要求

    2024年01月25日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包