RAG实战3-如何追踪哪些文档片段被用于检索增强生成

这篇具有很好参考价值的文章主要介绍了RAG实战3-如何追踪哪些文档片段被用于检索增强生成。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

RAG实战3-如何追踪哪些文档片段被用于检索增强生成

本文是RAG实战2-如何使用LlamaIndex存储和读取embedding向量的续集,在阅读本文之前请先阅读前篇。

在前篇中,我们介绍了如何使用LlamaIndex存储和读取embedding向量。在本文中,我们将介绍在LlamaIndex中如何获得被用于检索增强生成的文档片段。

下面的代码展示了如何使用LlamaIndex追踪哪些文档片段被用于检索增强生成:

import logging
import sys
import torch
from llama_index.core import PromptTemplate, Settings, StorageContext, load_index_from_storage, QueryBundle
from llama_index.core.schema import MetadataMode
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM

# 定义日志
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))

# 定义system prompt
SYSTEM_PROMPT = """You are a helpful AI assistant."""
query_wrapper_prompt = PromptTemplate(
    "[INST]<<SYS>>\n" + SYSTEM_PROMPT + "<</SYS>>\n\n{query_str}[/INST] "
)

# 使用llama-index创建本地大模型
llm = HuggingFaceLLM(
    context_window=4096,
    max_new_tokens=2048,
    generate_kwargs={"temperature": 0.0, "do_sample": False},
    query_wrapper_prompt=query_wrapper_prompt,
    tokenizer_name='/yldm0226/models/Qwen1.5-14B-Chat',
    model_name='/yldm0226/models/Qwen1.5-14B-Chat',
    device_map="auto",
    model_kwargs={"torch_dtype": torch.float16},
)
Settings.llm = llm

# 使用llama-index-embeddings-huggingface构建本地embedding模型
Settings.embed_model = HuggingFaceEmbedding(
    model_name="/yldm0226/RAG/BAAI/bge-base-zh-v1.5"
)

# 从存储文件中读取embedding向量和向量索引
storage_context = StorageContext.from_defaults(persist_dir="doc_emb")
index = load_index_from_storage(storage_context)
# 构建查询引擎
query_engine = index.as_query_engine(similarity_top_k=5)
# 获取我们抽取出的相似度前五的片段
contexts = query_engine.retrieve(QueryBundle("不耐疲劳,口燥、咽干可能是哪些证候?"))
print('-'*10 + 'ref' + '-'*10)
for i, context in enumerate(contexts):
    print('*'*10 + f'chunk {i} start' + '*'*10)
    content = context.node.get_content(metadata_mode=MetadataMode.LLM)
    print(content)
    print('*' * 10 + f'chunk {i} end' + '*' * 10)
print('-'*10 + 'ref' + '-'*10)
# 查询获得答案
response = query_engine.query("不耐疲劳,口燥、咽干可能是哪些证候?")
print(response)

运行代码,可以得到query的输出为:

从提供的中医临床证候信息来看,口燥、咽干的症状可能与以下证候相关:

1. 津液不足证:由于津液生成不足或者体内燥热导致,表现为口眼喉鼻干燥,咽干是其中的一个症状。

2. 津亏热结证:津液亏虚加上热邪内结,也可能出现口燥和咽干。

3. 津液亏涸证:严重的津液亏损可能导致口唇干燥、咽部干燥,伴随其他严重脱水症状。

4. 燥干清窍证:气候干燥或体质原因引起的津液缺乏,口鼻咽喉干燥也是其特征。

5. 津伤化燥证:燥热内蕴或内热化燥损伤津液,也会出现口燥、频饮但不解渴的现象。

因此,这些证候都有可能与不耐疲劳和口燥、咽干的症状相符合,需要结合其他临床表现来确定具体的证候类型。建议在中医诊断中由专业医生根据全人情况判断。

对于"不耐疲劳,口燥、咽干可能是哪些证候?"这个查询,其相似度前五的片段如下:

片段序号 片段信息
1 file_path: document/中医临床诊疗术语证候.txt

4.6.1.1
津液不足证 syndrome/pattern of fluid and humor insufficiency
津亏证
因津液生成不足,或嗜食辛辣,蕴热化燥,邪热灼损津液所致。临床以口眼喉鼻及皮肤等干燥,大便干结,小便短少,舌质偏红而干,脉细数等为特征的证候。

4.6.1.
2 file_path: document/中医临床诊疗术语证候.txt

临床以口干、舌燥,频饮而不解其渴,食多、善饥,夜尿频多,逐渐消瘦,舌质红,舌苔薄黄或少,脉弦细或滑数,伴见皮肤干燥,四肢乏力,大便干结等为特征的证候。

4.6.3.2
津亏热结证 syndrome/pattern of fluid depletion and heat binding
液干热结证
因津液亏虚,热邪内结所致。
3 file_path: document/中医临床诊疗术语证候.txt

临床以口眼喉鼻及皮肤等干燥,大便干结,小便短少,舌质偏红而干,脉细数等为特征的证候。

4.6.1.2
津液亏涸证 syndrome/pattern of fluid and humor scantiness
津液亏耗证
津液干枯证
因津液亏损,形体官窍失养所致。临床以口干、唇裂,鼻燥无涕,皮肤干瘪,目陷、螺瘪,甚则肌肤甲错,舌质红而少津,舌中裂,脉细或数,可伴见口渴、欲饮,干咳,目涩,大便干,小便少等为特征的证候。
4 file_path: document/中医临床诊疗术语证候.txt

临床以鼻咽干涩或痛,口唇燥干,舌质红,舌苔白或燥,脉浮或微数,伴见发热、无汗,头痛或肢节酸痛等为特征的证候。

3.6.3.2
燥干清窍证 syndrome/pattern of dryness harassing the upper orifices
因气候或环境干燥,津液耗损,清窍失濡所致。临床以口鼻、咽喉干燥,两眼干涩,少泪、少涕、少津、甚则衄血,舌质瘦小、舌苔干而少津,脉细等为特征的证候。
5 file_path: document/中医临床诊疗术语证候.txt

6.3.1
津伤化燥证 syndrome/pattern of fluid damage transforming into dryness
津伤燥热证
因燥热内蕴,或内热化燥,伤津耗液所致。临床以口干、舌燥,频饮而不解其渴,食多、善饥,夜尿频多,逐渐消瘦,舌质红,舌苔薄黄或少,脉弦细或滑数,伴见皮肤干燥,四肢乏力,大便干结等为特征的证候。

4.6.3.

可以看出,我们得到的query的输出中的证候都是这几个片段中的,大模型也确实根据我们检索出的片段进行了回复。

片段1和片段5的结尾存在多余的章节号,这主要与我们使用的embedding模型和设置的chunk_size有关。我们可以通过追踪观察这些被用于检索增强生成的文档片段来调整chunk_size的值,以让embedding模型切分出的片段更合理,提高RAG系统的表现。

如果想追踪更多的检索片段,可以提高similarity_top_k的值。

如果想追踪片段具体的相似度得分(Similarity Score)的值,可以将log中的level设置为DEBUG级别。文章来源地址https://www.toymoban.com/news/detail-837688.html

到了这里,关于RAG实战3-如何追踪哪些文档片段被用于检索增强生成的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • LLM之RAG实战(二十七)| 如何评估RAG系统

           有没有想过今天的一些应用程序是如何看起来几乎神奇地智能的?这种魔力很大一部分来自于一种叫做RAG和LLM的东西。把RAG(Retrieval Augmented Generation)想象成人工智能世界里聪明的书呆子,它会挖掘大量信息,准确地找到你的问题所需要的信息。然后,还有LLM(大型

    2024年02月22日
    浏览(26)
  • 探索检索增强生成(RAG)技术的无限可能:Vector+KG RAG、Self-RAG、多向量检索器多模态RAG集成

    由于 RAG 的整体思路是首先将文本切分成不同的组块,然后存储到向量数据库中。在实际使用时,将计算用户的问题和文本块的相似度,并召回 top k 的组块,然后将 top k 的组块和问题拼接生成提示词输入到大模型中,最终得到回答。 优化点: 优化文本切分的方式,组块大小

    2024年02月02日
    浏览(26)
  • RAG实战2-如何使用LlamaIndex存储和读取向量

    本文是检索增强生成(Retrieval-augmented Generation,RAG)实战1-基于LlamaIndex构建第一个RAG应用的续集,在阅读本文之前请先阅读前篇。 在前篇中,我们介绍了如何使用LlamaIndex构建一个非常简单的RAG应用,初步了解了LlamaIndex构建RAG应用的大体流程。在运行前篇的程序时,我们会发现两

    2024年03月09日
    浏览(39)
  • 大型语言模型RAG(检索增强生成):检索技术的应用与挑战

    检索增强生成(RAG)系统通过结合传统的语言模型生成能力和结构化数据检索,为复杂的问题提供精确的答案。本文深入探讨了RAG系统中检索技术的工作原理、实现方式以及面临的挑战,并对未来的发展方向提出了展望。 随着大型预训练语言模型(LLMs)如GPT-3和BERT的出现,

    2024年03月14日
    浏览(30)
  • 【高级RAG技巧】使用二阶段检索器平衡检索的效率和精度

    之前的文章已经介绍过向量数据库在RAG(Retrieval Augmented Generative)中的应用,本文将会讨论另一个重要的工具-Embedding模型。 一般来说,构建生产环境下的RAG系统是直接使用Embedding模型对用户输入的Query进行向量化表示,并且从已经构建好的向量数据库中检索出相关的段落用户

    2024年04月26日
    浏览(29)
  • Elasticsearch:什么是检索增强生成 (RAG)?

    检索增强生成 (RAG) 是一种利用来自私有或专有数据源的信息来补充文本生成的技术。 它将旨在搜索大型数据集或知识库的检索模型与大型语言模型 (LLM) 等生成模型相结合,后者获取该信息并生成可读的文本响应。 检索增强生成可以通过添加来自其他数据源的上下文并通过培

    2024年02月04日
    浏览(32)
  • Elasticsearch:什么是检索增强生成 - RAG?

    在人工智能的动态格局中,检索增强生成(Retrieval Augmented Generation - RAG)已经成为游戏规则的改变者,彻底改变了我们生成文本和与文本交互的方式。 RAG 使用大型语言模型 (LLMs) 等工具将信息检索的能力与自然语言生成无缝结合起来,为内容创建提供了一种变革性的方法。

    2024年02月08日
    浏览(26)
  • Elasticsearch 混合检索优化大模型 RAG 任务

    Elastic 社区在自然语言处理上面做的很不错官方博客更新速度也很快,现阶段大模型的应用场景主要在 Rag 和 Agent 上,国内 Rag(Retrieval-Augmented Generation 检索增强生成) 的尤其多,而搜索对于 Elasticsearch 来说是强项特别是 8.9 之后的版本提供了 ESRE 模块(集成了高级相关性排序

    2024年04月25日
    浏览(31)
  • AI数据技术02:RAG数据检索

            在人工智能的动态环境中,检索增强生成(RAG)已成为游戏规则的改变者,彻底改变了我们生成文本和与文本交互的方式。RAG 使用大型语言模型 (LLM) 等工具将信息检索的强大功能与自然语言生成无缝结合,为内容创建提供了一种变革性的方法。         在

    2024年02月03日
    浏览(31)
  • RAG实战6-如何在LlamaIndex中使用自己搭建的API

    在搭建一个大模型API服务中,我们介绍了如何使用SWIFT框架搭建一个大模型API服务。在RAG实战1-5中,我们一直使用的是本地加载大模型的方式来调用大模型,本文将介绍如何在LlamaIndex中使用自己搭建的大模型API。 LlamaIndex支持部分厂商的API配置,如OpenAI,但我们想使用的是自

    2024年03月14日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包