Rust 开发的高性能 Python 包管理工具,可替换 pip、pip-tools 和 virtualenv

这篇具有很好参考价值的文章主要介绍了Rust 开发的高性能 Python 包管理工具,可替换 pip、pip-tools 和 virtualenv。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

最近,我在 Python 潮流周刊 中分享了一个超级火爆的项目,这还不到一个月,它在 Github 上已经拿下了 8K star 的亮眼成绩,可见其受欢迎程度极高!国内还未见有更多消息,我趁着周末把一篇官方博客翻译出来了,分享给大家。

作者:@charliermarsh

译者:豌豆花下猫@Python猫

英文:uv: Python packaging in Rust (https://astral.sh/blog/uv)

声明:本翻译是出于交流学习的目的,为便于阅读,部分内容略有改动。转载请保留作者信息。

摘要

uv 是一个极其快速的 Python 包安装器和解析器,用 Rust 编写,旨在作为 pip 和 pip-tools 工作流的替代品。

它代表了我们追求“Python 的 Cargo”的里程碑:一个全面、快速、可靠且易于使用的 Python 项目和包管理器。

作为此次发布的一部分,我们还将接管 Rye,这是 Armin Ronacher 开发的一个实验性 Python 打包工具。我们将维护它,直到我们将 uv 扩展成统一的后继项目,以实现我们对 Python 打包的共同愿景。


在 Astral,我们为 Python 生态系统构建高性能的开发工具。我们最出名的是 Ruff,一个极其快速的 Python linter 和格式化工具。(译注:对 Ruff 的介绍 性能最快的代码分析工具,Ruff 正在席卷 Python 圈!)

今天,我们发布了 Astral 工具链中的下一个工具:uv,一个用 Rust 开发的高性能的 Python 包解析器和安装器。

Rust 开发的高性能 Python 包管理工具,可替换 pip、pip-tools 和 virtualenv

图注:使用热缓存来解析(左)和安装(右)Trio 依赖项,以模拟重新创建虚拟环境或向现有项目添加依赖项

uv 旨在作为 pip、pip-tools 和 virtualenv 的直接替代品,现在就可以用于生产环境中那些围绕这些工作流构建的项目。

产品原则

与 Ruff 一样,uv 的实现也遵循我们的核心产品原则:

  1. 痴迷于高性能

在上述基准测试中,uv 在没有缓存的情况下比 pip 和 pip-tools 快 8-10 倍,而在有热缓存的情况下(例如,重新创建虚拟环境或更新依赖项),则快 80-115 倍。

uv 使用全局模块缓存来避免重新下载和构建依赖项,并在支持的文件系统上利用 Copy-on-Write 和硬链接来最小化磁盘空间使用。

  1. 优化以便于采用

尽管我们对 Python 打包的未来有着宏大的愿景,但 uv 的初始版本聚焦于支持我们 uv pip 接口背后的 pip 和 pip-tools,使其可以零配置地被现有项目所采用。

相似地,uv 可以“仅仅”当作一个解析器(uv pip compile 锁定你的依赖项),“仅仅”当作一个虚拟环境创建器(uv venv),“仅仅”当作一个包安装器(uv pip sync),等等。它既是统一的,又是模块化的。

  1. 简化的工具链

uv 作为一个单一的静态二进制文件发布,能够替代 pip、pip-tools 和 virtualenv。uv 没有直接的 Python 依赖,因此你可以跟 Python 本身分别安装,避免了在多个 Python 版本(例如,pip vs. pip3 vs. pip3.7)之间选择 pip 安装程序。

安装使用

虽然 uv 将演变成一个完整的 Python 项目和包管理器(“Cargo for Python”),但像pip-tools 这样较狭窄的聚焦范围,让我们得以解决构建此类工具所涉及的低级问题(如包安装),同时立即提供有用的东西,最小化社区的使用障碍。

你可以通过我们的独立安装程序安装 uv,或者从 PyPI 安装。

使用 curl:

curl -LsSf https://astral.sh/uv/install.sh | sh

对 Windows:

powershell -c "irm https://astral.sh/uv/install.ps1 | iex"

使用 pip 或 pipx:

pip install uv
pipx install uv

uv 能满足你对现代 Python 打包工具的所有期望:可编辑安装、Git 依赖项、URL 依赖项、本地依赖项、约束文件、源码分发、自定义索引等,所有这些都设计成与你现有的工具无缝兼容。

uv 支持 Linux、Windows 和 macOS,并已针对公共的 PyPI 索引进行了大规模测试。

本文首发于 Python猫,博客:https://pythoncat.top/posts/2024-03-05-uv

即插即用的兼容性 API

这个初始版本主要实现了 uv 的pip 命令。对于使用过 pip 和 pip-tools 的人来说,这将会很熟悉:

  • 类似于pip install,运行uv pip install ,可从命令行、requirements 文件或 pyproject.toml 来安装 Python 依赖项
  • 类似于pip-compile,运行uv pip compile 来生成锁定的 requirements.txt
  • 类似于pip-sync,运行uv pip sync 来同步带有锁定的 requirements.txt 的虚拟环境

通过将这些“低级”命令放在uv pip下,我们在 CLI 中预留了空间,用于我们打算在未来发布的更“有主见”的项目管理 API,它看起来将更像 Rye、Cargo 或 Poetry。(想象一下 uv runuv build 等等)

uv 也可以通过uv venv 作为虚拟环境管理器使用。它比python -m venv 快大约 80 倍,比virtualenv 快 7 倍,且不依赖于 Python。

Rust 开发的高性能 Python 包管理工具,可替换 pip、pip-tools 和 virtualenv

图注:创建一个虚拟环境,有(左)和没有(右)pip 及 setuptools 种子包

uv 的虚拟环境符合标准,可以与其他工具互换使用——没有锁定机制或定制。

新功能

从头开始构建我们自己的包管理工具栈,这还为新功能开辟了空间。例如:

  • uv 支持替换解析策略。 默认情况下,uv 遵循标准的 Python 依赖解析策略,即优先选择每个包的最新兼容版本。但通过传入--resolution=lowest,库作者可以测试他们的包与依赖项的最低兼容版本。(这类似于 Go 的最小版本选择。)
  • uv 允许针对任意 Python 目标版本进行解析。 pip 和 pip-tools 默认针对当前安装的 Python 版本进行解析(例如,在 Python 3.12 下运行,将生成兼容于 Python 3.12 的解析),uv 支持--python-version 参数,使你能够在运行较新版本的情况下,生成兼容较低版本(例如 Python 3.7)的解析。
  • uv 允许依赖项“覆盖”。 uv 通过覆盖(-o overrides.txt)将 pip 的“约束”概念向前推了一步,允许用户通过覆盖包的声明依赖项来引导解析器。覆盖为用户提供了一个逃生舱口,用于解决错误的上限和其他错误声明的依赖项。

在当前形式下,uv 并不适合所有项目。pip 是一个成熟且稳定的工具,支持非常广泛的场景,并且专注于兼容性。虽然 uv 支持 pip 的大部分功能,但它缺乏对一些传统特性的支持,比如 .egg 分发。

同样,uv 目前还不支持生成与平台无关的锁定文件。这与 pip-tools 相符,但与 Poetry 和 PDM 不同,这使得 uv 更适合围绕 pip 和 pip-tools 工作流构建的项目。

对于那些深入打包生态系统的人来说,uv 还用 Rust 实现了符合标准的更多功能,例如 PEP 440(版本标识符)、PEP 508(依赖项说明符)、PEP 517(与构建系统无关的构建前端)、PEP 405(虚拟环境)等。

"Python 的 Cargo":uv 和 Rye

uv 代表着我们追求 "Python 的 Cargo" 的一个中间里程碑:一个统一的 Python 包和项目管理器,它极其快速、可靠且易于使用。

想象一下:一个单一的二进制文件,它可为你安装 Python,并为你提供使用 Python 所需的一切,不仅包括 pip、pip-tools 和 virtualenv,还有 pipx、tox、poetry、pyenv、ruff 等等。

使用 Python 工具链可能是一种低信心体验:为新项目或现有项目搭建环境需要大量的工作,而且命令通常以令人费解的方式报错。相比之下,在 Rust 生态中做事时,你信任工具会成功。Astral 工具链的目标是将 Python 从低信心体验转变为高信心体验。

我们对 Python 打包的愿景与 Rye 的愿景相去不远,Rye 是由 Armin Ronacher 开发的一个实验性的项目与包管理工具。

在与 Armin 的交流中,我们清楚地认识到我们的愿景非常接近,但实现这些愿景需要在基础工具上作大量投入。例如:构建这样的工具需要一个非常快速的、端到端集成的、跨平台的解析器和安装器。在 uv 里,我们已经构建出了这样的基础工具。

我们认为这是一个难得的合作机会,可以避免 Python 生态破碎。因此,我们与 Armin 合作,很高兴地接管了 Rye。 我们的目标是将 uv 发展成一个生产就绪的 "Python 的 Cargo",并在适当的时候提供一个将 Rye 平滑迁移到 uv 的路径。

在此之前,我们将维护 Rye,将其迁移成在幕后使用 uv,宽泛地说,它将成为我们正在构建的最终用户体验的实验性测试床。

虽然合并项目带来了一些挑战,但我们致力于在 Astral 的旗帜下构建一个单一的且统一的工具,并在我们发展 uv 成为一个合适且全面的继任者的同时,支持现有的 Rye 用户。

我们的路线图

在此次发布之后,我们的首要任务是支撑好那些在考察 uv 的用户,重点是提高跨平台的兼容性、性能和稳定性。

然后,我们将着手把 uv 扩展为一个完整的 Python 项目与包的管理器:一个单一的二进制文件,为你提供使用 Python 提高生产力所需的一切。

我们对 uv 有一个雄心勃勃的路线图。但在当下,我认为它对 Python 来说,感觉像是提供了一种非常不同的体验。我希望你们能尝试一下。

致谢

最后,我们要感谢所有直接或间接为 uv 的开发做出贡献的人。其中最重要的是 pubgrub-rs 的维护者 Jacob Finkelman 和 Matthieu Pizenberg。uv 使用了 PubGrub 作为其底层版本解析器,我们感谢 Jacob 和 Matthieu 在过去对 PubGrub 所做的工作,以及他们作为合作者对整个项目的关键助力。

我们还要感谢那些启发了我们的打包项目,尤其是 Cargo,以及来自 JavaScript 生态的 Bun、Orogene 和 pnpm,以及来自 Python 生态的 Posy、Monotrail 和 Rye。特别感谢 Armin Ronacher 与我们合作完成这项工作。

最后,我们还要感谢 pip 的维护者们以及更广泛的 PyPA 的成员,感谢他们为使 Python 打包成为可能所做的所有工作。文章来源地址https://www.toymoban.com/news/detail-837880.html

到了这里,关于Rust 开发的高性能 Python 包管理工具,可替换 pip、pip-tools 和 virtualenv的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • MyPerf4J一个高性能、无侵入的Java性能监控和统计工具,有点东西!

    MyPerf4J一个高性能、无侵入的Java性能监控和统计工具,有点东西!

    背景 随着所在公司的发展,应用服务的规模不断扩大,原有的垂直应用架构已无法满足产品的发展,几十个工程师在一个项目里并行开发不同的功能,开发效率不断降低。 于是公司开始全面推进服务化进程,把团队内的大部分工程师主要精力全部都集中到服务化中。服务化

    2024年02月15日
    浏览(7)
  • 芯片设计重要工具—— IBM LSF 分布式高性能计算调度平台

    IBM Spectrum® LSF® Suites 是面向分布式高性能计算 (HPC) 的工作负载管理平台和作业调度程序。基于 Terraform 的自动化现已可用,该功能可在 IBM Cloud® 上为基于 IBM Spectrum LSF 的集群供应和配置资源。 借助我们针对任务关键型 HPC 环境的集成解决方案,提高用户生产力和硬件使用,

    2024年01月19日
    浏览(9)
  • Python asyncio高性能异步编程 详解

    Python asyncio高性能异步编程 详解

    目录 一、协程 1.1、greenlet实现协程 1.2、yield 1.3、asyncio 1.4、async await 二、协程意义 三、异步编程 3.1、事件循环 3.2、快速上手 3.3、await 3.4、Task对象 3.5、asyncio.Future对象 3.5、concurrent.futures.Future对象 3.7、异步迭代器 3.8、异步上下文管理器 四、uvloop 五、实战案例

    2024年02月20日
    浏览(13)
  • Apache SeaTunnel:新一代高性能、分布式、海量数据集成工具从入门到实践

    Apache SeaTunnel:新一代高性能、分布式、海量数据集成工具从入门到实践

    Apache SeaTunnel 原名 Waterdrop,在 2021 年 10 月更名为 SeaTunnel 并申请加入 Apache孵化器。目前 Apache SeaTunnel 已发布 40+个版本,并在大量企业生产实践中使用,包括 J.P.Morgan、字节跳动、Stey、中国移动、富士康、腾讯云、国双、中科大数据研究院、360、Shoppe、Bilibili、新浪、搜狗、唯

    2024年02月03日
    浏览(8)
  • springBoot + netty搭建高性能 websocket 服务 & 性能测试(包含python 测试脚本)

    springBoot + netty搭建高性能 websocket 服务 & 性能测试(包含python 测试脚本)

    1、如果我们的app类似于股票这种,数据很多很快,之前用的tomcat自带的 websocket 又或者 spring-boot-starter-websocke 集成,但是性能在数据并发很大时就会存在问题。 2、我前面写的一篇关于 springBoot+webosket的,没有使用netty的文章 springBoot使用webSocket的几种方式以及在高并发出现的

    2024年02月04日
    浏览(11)
  • 高性能计算的矩阵乘法优化 - Python + OpenMP实现

    高性能计算的矩阵乘法优化 - Python + OpenMP实现

    关于上一节读者某些疑问 :为什么你用进程并行不是线程并行? 回答 :由于Python解释器有GIL(全局解释器锁),在单进程的解释器上有线程安全锁,也就是说每次只能一个线程访问解释器,因此Python在语法上的多线程(multithreads)实现是不会提高并行性能的。 这一点和C

    2024年02月15日
    浏览(13)
  • 高性能、可扩展、支持二次开发的企业电子招标采购系统源码

    高性能、可扩展、支持二次开发的企业电子招标采购系统源码

    在数字化时代,企业需要借助先进的数字化技术来提高工程管理效率和质量。招投标管理系统作为企业内部业务项目管理的重要应用平台,涵盖了门户管理、立项管理、采购项目管理、采购公告管理、考核管理、报表管理、评审管理、企业管理、采购管理和系统管理等多个方

    2024年01月23日
    浏览(39)
  • 高性能计算的矩阵乘法优化 - Python +MPI的实现

    本次实验的目的是使用MPI的并行性来进行矩阵乘法优化,本人使用 Python 实现 实验硬件: CPU :AMD Ryzen 7 5800H(3.20 GHz) 内存 :32GB (3200MHz) 要求 :使用一个矩阵,一个向量相乘,分别用单进程和多进程的mpi接口实现。 全局的规模参数是 Scale 数据示例 : 当 Scale=5 时,数据示例如

    2023年04月22日
    浏览(18)
  • openpyxl被干掉?全新python高性能excel解析库

    openpyxl被干掉?全新python高性能excel解析库

    同事有一段 python 脚本,里面用 pandas 读取一个几十万行的 excel 文件,但是速度实在太慢了。问我有没有什么好办法提升运行速度。如果在几个月以前,就实在没有什么好办法了。毕竟在 python 生态中,读写 excel 最后的倔强就是 openpyxl 了。你就别指望它能提速了。 现在可不一

    2024年02月22日
    浏览(7)
  • AIGC大模型时代下,该如何应用高性能计算PC集群打造游戏开发新模式?

    AIGC大模型时代下,该如何应用高性能计算PC集群打造游戏开发新模式?

    ACT | SIM | ETC | FTG | RAC AVG | RPG | FPS | MUG | PUZ ACT、SIM、ETC、FTG、RAC、RTS、STG、AVG、RPG、FPS、MUG、PUZ、SLG、SPG等游戏类型,需要高性能的计算机来支持运行。为了满足这些游戏的需求,国内服务器厂商不断推出新的产品,采用液冷散热技术,大模型构建和PC集群一体机等技术来提高

    2024年02月09日
    浏览(11)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包