【高级数据结构】Trie树

这篇具有很好参考价值的文章主要介绍了【高级数据结构】Trie树。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

原理

介绍

高效地存储和查询字符串的数据结构。所以其重点在于:存储、查询两个操作。

存储操作

示例和图片来自:https://blog.csdn.net/qq_42024195/article/details/88364485

假设有这么几个字符串:b,abc,abd,bcd,abcd,efg,hii。最终存储出来的Trie图如下图所示:

【高级数据结构】Trie树,树,高级数据结构,数据结构
具体是怎么存的呢?对于每一个字符串,从树的根节点开始,依次判断当前节点的儿子节点中是否有当前字符:

  • 如果有,则进行下一个字符的判断,同时根节点更新为该儿子节点
  • 如果没有,创建一个儿子节点为当前字符,然后根节点更新为该儿子节点

如果已经到了最后一个字符,就在对应的儿子节点进行一个标记,表示从根节点到该节点的字符组成的字符串是一个单词。(对应图中的红色部分)

查询

查询和存储的操作类似。对于一个给定的字符串,从树的根节点开始,依次判断当前节点的儿子节点中是否有当前字符:

  • 如果有,则进行下一个字符的判断,同时根节点更新为该儿子节点
  • 如果没有,则说明不存在该字符串,直接返回不存在

复杂度

时间复杂度:O(max_len(s))=O(h),h为Trie树的高度,即最长字符串的长度。

空间复杂度:不超过O(N * max_len(s))。

代码实现

208. 实现 Trie (前缀树)

class Trie {

    private Trie[] children; // 当前节点的所有儿子
    private boolean isEnd; // 当前节点是否为一个单词的结尾

    public Trie() {
        children = new Trie[26]; // 假设字符串中都是小写字母,那么一个节点的所有儿子最多只有26个
        isEnd = false;
    }
    
    /**
		存储操作:插入一个字符串
	*/
    public void insert(String word) {
       Trie node = this; // 从根节点开始
        for(char c : word.toCharArray()) {
            int u = c - 'a'; // [a, z] -> [0, 25]
            if (node.children[u] == null) { // 当前节点node不存在儿子节点 
                node.children[u] = new Trie(); // 创建一个节点为当前字符
            } 
            node = node.children[u]; // 更新根节点为儿子节点
        }
        node.isEnd = true;
    }
    
	/**
		查询操作:查询某个字符串是否在树中。如果在树中,可以是树中单词的前缀,也可以是完整的单词
	*/
    private Trie searchPrefix(String prefix) {
        Trie node = this; // 从根节点开始
        for(char c : prefix.toCharArray()) {
            int u = c - 'a'; // [a, z] -> [0, 25]
            if (node.children[u] == null) { // 当前节点node不存在儿子节点 
                return null;
            } 
            node = node.children[u]; // 走到儿子节点
        }
        return node;
    }
    
    public boolean search(String word) {
    	// 查询树中是否存在完整的单词
        Trie node = searchPrefix(word);
        return node != null && node.isEnd;
    }
    
    public boolean startsWith(String prefix) {
    	// 查询树中是否存在某个前缀
        return searchPrefix(prefix) != null;
    }
}

/**
 * Your Trie object will be instantiated and called as such:
 * Trie obj = new Trie();
 * obj.insert(word);
 * boolean param_2 = obj.search(word);
 * boolean param_3 = obj.startsWith(prefix);
 */

当然,Trie树也可以查询存储并查询一个单词出现了几次,只需要把isEnd改成cnt就行。当cnt为0时,表示没出现过,即不是一个完整的单词;当cnt > 0时,表示出现过,cnt的大小即为出现的次数。文章来源地址https://www.toymoban.com/news/detail-837981.html

到了这里,关于【高级数据结构】Trie树的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • LeetCode、208. 实现 Trie (前缀树)【中等,自定义数据结构】

    博主介绍:✌目前全网粉丝2W+,csdn博客专家、Java领域优质创作者,博客之星、阿里云平台优质作者、专注于Java后端技术领域。 涵盖技术内容:Java后端、算法、分布式微服务、中间件、前端、运维、ROS等。 博主所有博客文件目录索引:博客目录索引(持续更新) 视频平台:

    2024年02月19日
    浏览(41)
  • 【字典树/trie树】实现高效插入和查询字符串的数据结构

    本文是https://www.acwing.com/problem/content/description/837/的总结,有兴趣可以做做 字典树的实现依赖于树结构,有两种操作,1是插入字符串,2是查找字符串。使用idx维护最新的结点下标。如下图,假设我们维护一个   可以看到,我们维护了一个树形结构储存了左边的字符串,但是

    2024年02月03日
    浏览(52)
  • 初识Go语言25-数据结构与算法【堆、Trie树、用go中的list与map实现LRU算法、用go语言中的map和堆实现超时缓存】

      堆是一棵二叉树。大根堆即任意节点的值都大于等于其子节点。反之为小根堆。   用数组来表示堆,下标为 i 的结点的父结点下标为(i-1)/2,其左右子结点分别为 (2i + 1)、(2i + 2)。 构建堆   每当有元素调整下来时,要对以它为父节点的三角形区域进行调整。 插入元素

    2024年02月12日
    浏览(59)
  • 【高级数据结构】树状数组

    目录 树状数组1 (单点修改,区间查询) 树状数组2(区间修改,单点查询) 树状数组1 (单点修改,区间查询) 题目链接:洛谷 树状数组1 题目描述 如题,已知一个数列,你需要进行下面两种操作: 将某一个数加上 x 求出某区间每一个数的和 输入格式 第一行包含两个正

    2024年02月15日
    浏览(48)
  • 【高级数据结构】线段树

    目录 树状数组1(单点修改,区间查询) 树状数组2(区间修改,单点查询) 线段树1(区间修改,区间查询) 代码源线段树1(查询最小值出现次数)  代码源线段树2(最大字段和) 树状数组1(单点修改,区间查询) 题目链接:  https://www.luogu.com.cn/problem/P3374 代码: 树状

    2024年02月15日
    浏览(40)
  • 数据结构高级算法

      目录 最小生成树 Kruskal(克鲁斯卡尔)(以边为核心) 9) 不相交集合(并查集合) 基础 Union By Size 图-相关题目 4.2 Greedy Algorithm 1) 贪心例子 Dijkstra Prim Kruskal 最优解(零钱兑换)- 穷举法 Leetcode 322 最优解(零钱兑换)- 贪心法 Leetcode 322 3) Huffman 编码问题 问题引入 Huffman 树 Huffm

    2024年02月21日
    浏览(54)
  • 【算法 & 高级数据结构】树状数组:一种高效的数据结构(二)

    🚀 个人主页 :为梦而生~ 关注我一起学习吧! 💡 专栏 :算法题、 基础算法、数据结构~赶紧来学算法吧 💡 往期推荐 : 【算法基础 数学】快速幂求逆元(逆元、扩展欧几里得定理、小费马定理) 【算法基础】深搜 数据结构各内部排序算法总结对比及动图演示(插入排序

    2024年03月26日
    浏览(85)
  • 【算法 & 高级数据结构】树状数组:一种高效的数据结构(一)

    🚀 个人主页 :为梦而生~ 关注我一起学习吧! 💡 专栏 :算法题、 基础算法~赶紧来学算法吧 💡 往期推荐 : 【算法基础 数学】快速幂求逆元(逆元、扩展欧几里得定理、小费马定理) 【算法基础】深搜 树状数组 (Binary Indexed Tree,BIT)是一种数据结构,用于高效地处理

    2024年03月11日
    浏览(68)
  • 索引的数据结构(MySql高级)

    索引是存储引擎用于快速找到数据记录的一种数据结构,就好比一本教科书的目录部分,通过目录中找到对应文章的页码,便可快速定位到需要的文章. MySQL中也是一样的道理,进行数据查找时,首先查看查询条件是否命中某条索引,符合则通过索引查找相关数据,如果不符合

    2024年01月18日
    浏览(45)
  • C++ 高级数据结构————[ 单调栈 ]

    每周一篇的算法文章来了 今天讲解的是高级数据结构中的——单调栈 单调栈,顾名思义,就是升级版的栈() 先回顾一下栈把 栈 ,是一种线性表,它的特点是只能从一边进出,并且先进后出,后进先出。就想枪的弹夹一样。 而单调栈,跟他有一点不同 单调栈 ,每时每刻

    2023年04月20日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包