【计算机视觉】图像处理算法(形态学滤波篇)

这篇具有很好参考价值的文章主要介绍了【计算机视觉】图像处理算法(形态学滤波篇)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

来源:《OpenCV3编程入门》,怀念毛星云大佬🕯️
说明:本系列重点关注各种图像处理算法的原理、作用和对比

形态学滤波(1 ):腐蚀与膨胀

形态学槪述

数学形态学的概念:
数学形态学(Mathematical morphology)是立在格论和拓扑学基础之上的图像分析学科,足数学形态学阁像处现的基本理论。其基本的运算包括:二值腐蚀和膨胀、二值开闭运算、骨架抽収、极限腐蚀、击中击不中变换、形态学梯度、Top-hat变换、颗粒分析、流域变换、灰值腐蚀和膨胀、灰值开闭运算、灰值形态学梯度等。简中来讲,形态学操作就是基于形状的一系列图像处理操作。OpenCV为进行图像的形态学变换提供了快捷、方便的函数。最基本的形态学操作有两种,分别是:膨胀(dilate)与腐蚀(erode)。膨胀与腐蚀能实现多种多样的功能,主要如下。

  • 消除噪声;
  • 分割(isolate)出独立的阁像元索,在图像中连接(join)相邻的元素:
  • 寻找图像中的明显的极大值K域或极小值区域;
  • 求出图像的梯度。

在进行腐蚀和膨胀的讲解之前,首先提醒大家注意.腐蚀和膨胀是对**白色部分(高亮部分)**而言的,不是黑色部分。膨胀是图像中的髙亮部分进行膨胀,类似于“领域扩张”,效果图拥有比原图更大的高亮区域;腐蚀是原图中的髙亮部分被腐蚀,类似于“领域被蚕食效果图拥有比原图更小的高亮区域。

例图:
【计算机视觉】图像处理算法(形态学滤波篇),人工智能,计算机视觉,图像处理,算法

膨胀

膨胀(dilate)就是求局部最大值的操作。从数学角度来说,膨胀或者腐蚀操作就是将图像(或图像的一部分区域,称之为A)与核(称之为B)进行卷积。核可以是任何形状和大小,它拥有一个单独定义出来的参考点,我们称其为锚点(anchorpoint)。多数情况下,核是一个小的,中间带有参考点和实心正方形或者圆盘。其实,可以把核视为模板或者掩码。而膨胀就是求局部最大位的操作。核B与图形卷积,即计算核B覆盖的区域的像素点的最大值,并把这个最大值赋值给参考点指定的像素。这样就会使图像中的高亮区域逐渐増长,这就是膨账操作的初衷。

示例图:
【计算机视觉】图像处理算法(形态学滤波篇),人工智能,计算机视觉,图像处理,算法

腐蚀

膨胀和腐蚀 ( erode) 是相反的一对操作 ,所以腐蚀就是求局部最小值的操作。我们一般都会把腐蚀和膨胀进行对比理解和学习。两者的
函数原型也是基本一样的。

示例图:
【计算机视觉】图像处理算法(形态学滤波篇),人工智能,计算机视觉,图像处理,算法

形态学滤波(2):开运算、闭运算、形态学梯度、顶帽、黑帽

形态学的高级形态,往往都是建立在腐蚀和膨胀这两个基本操作之上的。

开运算

开运算(Opening Operation),其实就是先腐蚀后膨胀的过程。开运算可以用来消除小物体,在纤细点处分离物体,并且在平滑较大物体的边界的同时不明显改变其面积

示例图:
【计算机视觉】图像处理算法(形态学滤波篇),人工智能,计算机视觉,图像处理,算法

闭运算

先膨账后腐蚀的过程称为闭运算(Closing Operation),闭运算能够排除小型黑洞(黑色区域)

示例图:
【计算机视觉】图像处理算法(形态学滤波篇),人工智能,计算机视觉,图像处理,算法

形态学梯度

形态学梯度(Morphological Gradient)是膨胀图与腐蚀图之差。对二值图像进行这操作可以将团块(blob)的边缘突出出来。我们可以用形态学梯度来保留物体的边缘轮廓

个人理解(以黑白2值图为例):膨胀和腐蚀都是对边缘进行操作,腐蚀是黑色向白色区域内腐蚀,膨胀是白色向黑色区域内膨胀,向内和向外的操作会产生一个粗的线条区域,这个区域在腐蚀的时候是黑色,在膨胀的时候是白色,这个时候差值就是白色,其他的区域在腐蚀和膨胀的时候是不变的,差值就是0,也就是黑色,这样白色区域就表现出了边缘信息。

示例图:
【计算机视觉】图像处理算法(形态学滤波篇),人工智能,计算机视觉,图像处理,算法

顶帽

顶帽运算(Top Hat)又常常被译为"礼帽“运算,是原图像与开运算的结果图之差,因为开运算带来的结果是放大了裂缝或者局部低亮度的区域。由此,从原图中减去开运算后的图,得到的效果图突出了比原图轮廓周围的区域更明亮的区域,且这一操作与选择的核的大小相关。顶帽运算往往用来分离比邻近点亮一些的斑块。在一幅图像具有大幅的背景,而微小物品比较有规律的情况下,可以使用顶帽运算进行背景提取

示例图:
【计算机视觉】图像处理算法(形态学滤波篇),人工智能,计算机视觉,图像处理,算法

黑帽

黑帽(Black Hat)运算是闭运算的结果图与原图像之差,黑帽运算后的效果图突出了比原图轮廓周围的区域更暗的区域,且这一操作
和选择的核的大小相关。所以,黑帽运算用來分离比邻近点暗一些的斑块,效果图有着非常完美的轮廓。示例如阁6.38和图6.39所示。文章来源地址https://www.toymoban.com/news/detail-838253.html

到了这里,关于【计算机视觉】图像处理算法(形态学滤波篇)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 计算机视觉任务图像预处理之去除图像中的背景区域-------使用连通域分析算法(包含完整代码)

    通过连通域分析算法能够找到最大的连通域,即图片的主体部分,然后保存该连通域的最小外接矩阵,即可去除掉无关的背景区域 更多图像预处理操作工具集包含在这个github仓库中

    2024年02月06日
    浏览(56)
  • 计算机视觉——图像处理基础

    随着计算机视觉的不断发展,图像的预处理成为分析图像的必然前提,本文就介绍图像处理的基础内容。 图像中,高频部分是图像中像素值落差很大的部分,如图像边缘,该部分的有用信息经常被噪声淹没。降低高频段的噪声是设计图像滤波器的关键。 图像滤波器就是一个

    2024年01月19日
    浏览(62)
  • 【计算机视觉】数字图像处理(六)—— 图像压缩

    (一)、图像编码技术的研究背景 1. 信息信息传输方式发生了很大的改变 通信方式的改变 文字+语音 图像+文字+语音 通信对象的改变 人与人 人与机器,机器与机器 2. 图像传输与存储需要的信息量空间 (1)彩色视频信息 对于电视画面的分辨率640 480的彩色图像,每秒30帧,

    2024年02月05日
    浏览(86)
  • 【计算机视觉】数字图像处理(四)—— 图像增强

    图像增强是采用一系列技术去改善图像的视觉效果,或将图像转换成一种更适合于人或机器进行分析和处理的形式。例如采用一系列技术有选择地突出某些感兴趣的信息,同时抑制一些不需要的信息,提高图像的使用价值。 图像增强方法 图像增强方法从增强的作用域出发,可

    2023年04月16日
    浏览(108)
  • 目标检测 图像处理 计算机视觉 工业视觉

    从事ai视觉算法有几年了,本帖是对以往做过的计算机视觉项目的一些总结,硬件部署的大多是基于nvidia的开发板和GPU服务器上,如jetson nano,还有地平线J3J5和瑞芯微以及星辰的开发板,另外就是对实时性要求不高的部署在cpu上。有相关项目需求可以一起交流和学习。(+v 3

    2024年02月06日
    浏览(57)
  • 计算机视觉(2)——图像预处理

    二、图像预处理 2.1 介绍  2.2 特征提取方法 2.2.1 直方图 2.2.2 CLAHE 2.2.3 形态学运算 2.2.4 空间域处理及其变换 2.2.5 空间域分析及变换  (1) 均值滤波 (2)中值滤波 (3)高斯滤波 (4) 梯度Prewitt滤波 (5) 梯度Sobel滤波 (6) 梯度Laplacian滤波 (7) 其他滤波  2.2.6 频域分

    2024年02月03日
    浏览(64)
  • 图像处理/计算机视觉期刊投稿经验

    我不配,以后有机会再说吧。 我也不配,以后有机会再说吧。 2022年投过,一个月之后被编辑immediate reject, 原因是“the scope not aligning well with the theme interest and/or desired genres of TSP”。在邮件的末尾,编辑表示manuscript的选题“well motivated”并且“interesting”,主要担忧是所用到的

    2024年02月08日
    浏览(55)
  • 计算机视觉图像处理常用方法汇总

    光线进入眼睛:当光线从一个物体反射或散射出来,进入人的眼睛时,它们通过角膜和晶状体进入眼球内部。 聚焦光线:角膜和晶状体将光线聚焦在视网膜上。晶状体可以通过调整其形状来调节聚焦距离,使物体的图像清晰地映射在视网膜上。 光敏细胞感受光线:视网膜是

    2024年02月07日
    浏览(55)
  • 机器视觉、图像处理和计算机视觉:概念和区别

    机器视觉、图像处理和计算机视觉:概念和区别nbsp; 机器视觉、图像处理和计算机视觉是相关但有区别的概念。 机器视觉主要应用于工业领域,涉及图像感知、图像处理、控制理论和软硬件的结合,旨在实现高效的运动控制或实时操作。 图像处理是指利用计算机对图像进行

    2024年02月06日
    浏览(47)
  • 计算机视觉实验:图像处理综合-路沿检测

    目录 实验步骤与过程 1. 路沿检测方法设计 2. 路沿检测方法实现 2.1 视频图像提取 2.2 图像预处理 2.3 兴趣区域提取 2.4 边缘检测 ​​​​​​​2.5 Hough变换 ​​​​​​​2.6 线条过滤与图像输出 3. 路沿检测结果展示 4. 其他路沿检测方法 实验结论或体会 实验内容: 针对

    2024年02月14日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包