AI知识库进阶!三种数据处理方法!提高正确率!本地大模型+fastgpt知识库手把手搭建!22/45

这篇具有很好参考价值的文章主要介绍了AI知识库进阶!三种数据处理方法!提高正确率!本地大模型+fastgpt知识库手把手搭建!22/45。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

hi~

在上一篇,我们成功搭建了本地知识库+大模型的完全体!

在知识星球收到很多朋友的打卡,有各种报错差点崩溃的,也有看到部署成功,开心得跳起来的!

除了自用,还有星球朋友学会搭建,成功接到商单(听说单子还不小)!

不管怎样,酸甜苦辣,总算把它部署了下来,动起手来,排错的过程,其实成长非常快的!只是,小胖最近给小朋友远程,好像变得有点emo!

做完这个系列,雄哥还有更迫切的三个重要事项跟进!

①医疗项目的落地     ②分层自治Agent     ③NLP知识框架项目

所以会更得特别快,如果你搞不定,马上联系小胖吧!

今天继续!

跟着雄哥动手,由浅到深,把知识库搭建出来吧!

记得吧?整体项目是这样的!

安装fastgpt会提升模型推理速度,人工智能,nlp,语言模型,python,pytorch,langchain

我们在纯本地的环境搭建,涉及垂类大模型+嵌入模型的部署、docker部署,都搞掂后!

使用知识库应用去搭建本地私有的知识库!

现在市场上已有大量的知识库/文档对话产品了,学会了这个部署,你基本了解到整个企业知识库部署的过程!内容如下:

day16:动手本地部署fastgpt知识库应用【已更新】

day17:动手本地部署ONE-API管理工具,与知识库打通!【已更新】

day18:与知识库对话!部署Qwen-7B/14B,用API接入知识库!【已更新】

day19:与知识库对话!部署ChatGLM3-6B,用API接入知识库!【已更新】

day20:本地部署M3e嵌入模型!接入知识库,完全体!大功告成!【已更新】

day21:快速上手!3分钟动手搭建私有的知识库!【已更新】

day22:进阶!三种数据处理办法,提高知识库性能!【本篇】

day23:进阶!知识库可视化高级编排!实现联网+外部API+插件!

day24:进阶!自定义内容,不该说的一句不说,只聊指定内容!

day25:按部门/学科,建立知识库并分发给对应部门使用

一边做一边看大家反馈,有不清楚的,雄哥再补充!

ok!人的专注力只有10分钟!那,话不多说!

本篇在win11系统完成,需要docker+WSL子系统(非wsl不稳定)!

星球的伙伴学完【7天精通docker】,可以直接上手!

还没来得及学的,可以在星球先学!

点击申请加入知识星球https://t.zsxq.com/15XR5BKhd

如果你还没加星球,那你一定要加啦!

整个过程非常的简单!

① 知识库是如何与大模型一起工作的?

② 三种数据处理方法有什么不同

第一部分:知识库与大模型的关系


我们搭好了知识库,很多伙伴,还不是很清楚它是怎么工作的!

也有朋友问!为什么要搭建Qwen?为什么搭建m3e嵌入模型?

都有什么用?

我们要提升知识库的准确率+性能,必须要弄明白以上!

当然,如果你仔细学习过知识星球的langchain系列,直接跳过!

我们的整个过程,有对话、知识库训练两种方式!

看下图,非常清楚,就不介绍了!今天我们学知识库训练!

安装fastgpt会提升模型推理速度,人工智能,nlp,语言模型,python,pytorch,langchain

第二部分:三种数据处理方式


现在开始!把qwen大模型+docker启动!跟着雄哥动起手来!

安装fastgpt会提升模型推理速度,人工智能,nlp,语言模型,python,pytorch,langchain

安装fastgpt会提升模型推理速度,人工智能,nlp,语言模型,python,pytorch,langchain

登录到fastgpt后台!具体登录方法我不说了,之前都说了N次!

先新建一个知识库吧!

安装fastgpt会提升模型推理速度,人工智能,nlp,语言模型,python,pytorch,langchain

然后来到今天的主角!

他们的区别,上一篇雄哥已经简单介绍过了!今天深化去讲他!

安装fastgpt会提升模型推理速度,人工智能,nlp,语言模型,python,pytorch,langchain

#A 直接分段

简单粗暴,你在下方填了多少字数,系统自动按照字数,把知识库切成同等大小!检索的时候,系统不会访问整个文档,而直接聚焦这一块,提升了检索效率!但是问题也很明显,就是把原来的数据切坏了!

这里默认700,是根据fastgpt的配置文件调的,当然可以调其他字数!但效果都知道的!

点确定导入后,你的显卡立即就会有反映!它会自动调用m3e嵌入模型做向量化处理!

来到one API的后台,它的处理非常快!

安装fastgpt会提升模型推理速度,人工智能,nlp,语言模型,python,pytorch,langchain

#B 对话QA拆分

看名字就知道了,就是用大模型,先对文本快进行一问一答的数据生成,然后再交给m3e做向量化处理,这比上面简单拆分多了一步!

这样的问答对处理,可以一定程度上地提高召回率,因为把用户可能的提问,都放到了向量数据中,便于模型检索!

但是!!

非常考验显卡性能+大模型的能力!待会看qwen-14B表现如何吧!

fastgpt默认有一段提示词预设,是程序的功能,你也可以根据自己的数据,更改提示词,这会影响大模型的结果,所以这就考验兄弟你的提示词工程功底了!

多少钱不用管它,这是本地模型,无所谓!

安装fastgpt会提升模型推理速度,人工智能,nlp,语言模型,python,pytorch,langchain

如果你创建知识库的时候不是选qwen,那你没有这个功能,要先勾选才行!看回第一步!显存不够的用glm3-6b!

当然!你也可以用OpenAI KEY的!这样的话,数据处理更准确!

点确定导入!我们来到qwen的部署界面,看到也已经开始工作了!

安装fastgpt会提升模型推理速度,人工智能,nlp,语言模型,python,pytorch,langchain

#C csv模板导入

上面三种数据处理方法,都有种囫囵吞枣!因为本身的数据处理是非结构化的!例如:

“通过一个实例理解基于字符分割和基于 Token 分割的区别可以看出token长度和字符长度不一样,token通常为4个字符五、分割Markdown文档5.1 分割一个自定义 Markdown 文档分块的目的是把具有上下文的文本放在一起,我们可以通过使用指定分隔符来进行分隔,但有些类型的文档(例如 Markdown )本身就具有可用于分割的结构(如标题)”

非结构化的数据,会降低知识库召回率,加上粗暴拆分,再减分!

知识星球的langchain系列,雄哥介绍了几种拆分方法,大家一定要根据自己的数据,选择最合适的方法,去拆分文档!

所以我们要把这些数据变成结构化!

CSV就是其中一种,我们打开一个CSV文件!

这些数据,是人工、或者公司现有的数据库产生!内容质量非常高的!

安装fastgpt会提升模型推理速度,人工智能,nlp,语言模型,python,pytorch,langchain

AIGC发展分为几个阶段?

早期萌芽阶段(20世纪50年代至90年代中期)、沉淀积累阶段(20世纪90年代中期至21世纪10年代中期)、快速发展展阶段(21世纪10年代中期至今)

这就是一个APP!不会坏!大不了重新安装!所以!动起手来!

下一篇,跟着雄哥学习高级编排,彻底把知识库玩透!

目前知识星球组织了自主Agent的内测项目,如果你感兴趣的话,快加入吧!文章来源地址https://www.toymoban.com/news/detail-838359.html

到了这里,关于AI知识库进阶!三种数据处理方法!提高正确率!本地大模型+fastgpt知识库手把手搭建!22/45的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 智能AI知识库,增强AI知识的开源项目

    FastWiki是一个高性能、基于最新技术栈的知识库系统,旨在为大规模信息检索和智能搜索提供解决方案。它采用微软Semantic Kernel进行深度学习和自然语言处理,在后端使用 MasaFramework ,前端采用 MasaBlazor 框架,实现了一个高效、易用、可扩展的智能向量搜索平台。其目标是帮

    2024年03月09日
    浏览(59)
  • 【chatglm3】(4):如何设计一个知识库问答系统,参考智谱AI的知识库系统,

    https://www.bilibili.com/video/BV16j411E7FX/?vd_source=4b290247452adda4e56d84b659b0c8a2 【chatglm3】(4):如何设计一个知识库问答系统,参考智谱AI的知识库系统,学习设计理念,开源组件 https://open.bigmodel.cn/knowledge 知识配置: 项目地址是: https://github.com/chatchat-space/Langchain-Chatchat gitee搬运的项

    2024年02月05日
    浏览(48)
  • langchain ChatGPT AI私有知识库

    原理就是把文档变为向量数据库,然后搜索向量数据库,把相似的数据和问题作为prompt, 输入到大模型,再利用GPT强大的自然语言处理、推理和分析等方面的能力将答案返回给用户 langchain是一个强大的框架,旨在帮助开发人员使用语言模型构建端到端的应用程序。它提供了

    2024年02月11日
    浏览(43)
  • 如何用 AI 工具建立自己的知识库?

    选择AI工具 :选择一个适合的AI工具,这取决于你的需求和偏好。一些流行的AI工具包括百度大脑(Baidu Brain)、微软的Azure认知服务、IBM的Watson等。 数据收集 :收集需要加入知识库的数据。这可以包括文本、图像、音频和视频等多种形式的数据。确保你有权使用这些数据,并

    2024年04月25日
    浏览(41)
  • 使用 FastGPT 构建高质量 AI 知识库

    作者:余金隆。FastGPT 项目作者,Sealos 项目前端负责人,前 Shopee 前端开发工程师 FastGPT 项目地址: https://github.com/labring/FastGPT/ 自从去年 12 月 ChatGPT 发布以来,带动了一轮新的交互应用革命。尤其在 GPT-3.5 接口全面开放后,大量的 LLM 应用如雨后春笋般涌现。然而,由于 GP

    2024年02月14日
    浏览(49)
  • 使用chatglm搭建本地知识库AI_闻达

    最近大火的chatgpt,老板说让我看看能不能用自己的数据,回答专业一些,所以做了一些调研,最近用这个倒是成功推理了自己的数据,模型也开源了,之后有机会也训练一下自己的数据。 1.1双击打开anconda prompt创建虚拟环境 1.2下载pytorch(这里要根据自己的电脑版本下载)都

    2024年02月10日
    浏览(51)
  • ai聊天问答知识库机器人源码,基于gpt实现的本地知识库问答实现,聊天对话效果,发送回复以及流式输出...

    现在基于gpt做自己项目的问答机器人,效果非常的好。可以把自己的文档上传上去,让机器人根据文档来进行回答。 想要实现智能AI问答功能,现在大部分都是基于向量数据库的形式。 整体的流程就是:上传文档===openai向量接口 ==== 存入向量数据库 访客咨询:  咨询问题

    2024年02月10日
    浏览(49)
  • 微信接入知识库定制化的AI会怎样?

    想不想要一个更加了解你的chatgpt?或者想给chatgpt加入特定的知识库? LinkAI来帮你! 通过LinkAI,无需openai的api key,直接使用chatgpt。 无需考虑服务器代理配置,openai账号注册等! 自定义知识库,满足个人、企业的客服需求! 这里不介绍具体的实现方法,先教你怎么部署自定

    2024年01月21日
    浏览(38)
  • 只需三步,本地打造自己的AI个人专属知识库

    本文会手把手教你如何部署本地大模型以及搭建个人知识库,使用到的工具和软件有 Ollama Open WebUI Docker AnythingLLM 本文主要分享三点 如何用Ollama在本地运行大模型 使用现代Web UI和本地大模型\\\"聊天\\\" 如何打造完全本地化的知识库:Local RAG 读完本文,你会学习到 如何使用最好用

    2024年04月27日
    浏览(40)
  • AI 智能对话 - 基于 ChatGLM2-6B 训练对话知识库

    前情提要 怎么将 AI 应用到工作中呢?比如让 AI 帮忙写代码,自己通过工程上的思维将代码整合排版,我挺烦什么代码逻辑严谨性的问题,但是我又不得不承认这样的好处,我们要开始将角色转换出来,不应该是一个工具人,而成为决策者,这是从 AI 爆发中看到的发展趋势,

    2024年02月12日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包