【算法 & 高级数据结构】树状数组:一种高效的数据结构(一)

这篇具有很好参考价值的文章主要介绍了【算法 & 高级数据结构】树状数组:一种高效的数据结构(一)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

🚀个人主页:为梦而生~ 关注我一起学习吧!
💡专栏:算法题、 基础算法~赶紧来学算法吧
💡往期推荐
【算法基础 & 数学】快速幂求逆元(逆元、扩展欧几里得定理、小费马定理)
【算法基础】深搜



1 引言

1.1 树状数组的概念

树状数组(Binary Indexed Tree,BIT)是一种数据结构,用于高效地处理数组的动态查询和更新操作。它可以在O(log n)的时间复杂度内完成单点更新和前缀和查询操作。树状数组常用于解决数组频繁更新和查询前缀和的问题,比如求解逆序对、区间和等。

【算法 & 高级数据结构】树状数组:一种高效的数据结构(一),基础算法,数据结构,算法,数据结构,蓝桥杯

1.2 树状数组的应用场景

  1. 动态查询问题:树状数组非常适用于需要动态查询某个区间内元素和的场景。
  2. 频繁更新问题:树状数组也适用于频繁更新数组元素的情况。
  3. 逆序对问题:逆序对问题是一个常见问题,即找出数组中所有满足i<ja[i]>a[j](i, j)对。树状数组可以在O(nlogn)的时间复杂度内解决这个问题。

2 基础知识

2.1 二进制索引的概念和性质

二进制索引,也称为树状数组或有限差分数组,是一种特殊的数据结构,用于高效地处理数组中的前缀和查询。它的核心思想是利用二进制表示中的每一位来快速计算前缀和,从而实现高效的查询和更新操作。

【算法 & 高级数据结构】树状数组:一种高效的数据结构(一),基础算法,数据结构,算法,数据结构,蓝桥杯

概念

二进制索引的主要概念是基于数组元素的二进制表示来构建索引。具体来说,对于数组中的每个元素,我们可以将其下标转换为二进制形式,并根据二进制位来构建索引。通过维护这些索引,我们可以快速计算数组的前缀和,从而实现高效的查询和更新操作。

性质

  • 前缀和查询的高效性:二进制索引可以在O(log n)的时间复杂度内计算数组的前缀和。这是因为它利用了二进制表示的特性,通过跳跃式地计算不同位上的前缀和,实现了快速查询。
  • 单点更新的高效性:与前缀和查询一样,二进制索引也可以在O(log n)的时间复杂度内完成单点更新操作。当数组中的某个元素发生变化时,只需要更新对应的索引,即可快速反映到前缀和上。
  • 空间效率:二进制索引的空间复杂度与原始数组相同,即O(n)。它不需要额外的存储空间来维护索引结构,因此具有较高的空间效率。

2.2 前缀和的概念和计算

前缀和(Prefix Sum)是一个数组的概念,指的是数组中从第一个元素开始到某个位置元素(包括该位置元素)的总和。前缀和通常用于快速计算某个区间的和,避免了对每个元素进行逐一相加的操作,从而提高计算效率。

计算前缀和的方法很简单,通常是通过迭代数组中的每个元素,并将当前元素与前一个元素的前缀和相加,得到当前元素的前缀和。第一个元素的前缀和就是它本身。

例如,给定一个数组 arr = [1, 2, 3, 4, 5],它的前缀和数组 prefix_sum 可以这样计算:

prefix_sum[0] = arr[0] = 1  
prefix_sum[1] = arr[0] + arr[1] = 1 + 2 = 3  
prefix_sum[2] = arr[0] + arr[1] + arr[2] = 1 + 2 + 3 = 6  
prefix_sum[3] = arr[0] + arr[1] + arr[2] + arr[3] = 1 + 2 + 3 + 4 = 10  
prefix_sum[4] = arr[0] + arr[1] + arr[2] + arr[3] + arr[4] = 1 + 2 + 3 + 4 + 5 = 15

所以,前缀和数组 prefix_sum 为 [1, 3, 6, 10, 15]。


3 树状数组的定义和数学推导

3.1 通俗易懂的解释什么是树状数组※

【算法 & 高级数据结构】树状数组:一种高效的数据结构(一),基础算法,数据结构,算法,数据结构,蓝桥杯

对于一个数组,我们通常需要这样的操作:

  1. 修改某个元素的值
  2. 求一段区间的和

如果用朴素的做法,我们通常需要开一个数组,保存下来所有元素,每查询一次,遍历一次数组

但这会使得求和操作的时间复杂度达到 O ( n ) O(n) O(n),但如果数据量和查询次数达到上百万,这样的效率太低了

  • 但有人可能会想到,把数组中的元素两两求和,保存到另一个数组中:
    【算法 & 高级数据结构】树状数组:一种高效的数据结构(一),基础算法,数据结构,算法,数据结构,蓝桥杯

这样我们在计算的时候就会节省一半的时间,修改数据的时候也就是多改一个数字而已,但是对于很大的数据量,还是很慢。

  • 那我们可以再将这一层元素两两求和,往上叠加一层,直到只剩一个元素为止:
    【算法 & 高级数据结构】树状数组:一种高效的数据结构(一),基础算法,数据结构,算法,数据结构,蓝桥杯

这样即使要求和的数字很多,我们也可以利用这些额外的数组计算出需要的答案(用空间换时间的思想)

例如:要计算前14个数字的和
【算法 & 高级数据结构】树状数组:一种高效的数据结构(一),基础算法,数据结构,算法,数据结构,蓝桥杯
只需要计算这样4个数字就行
【算法 & 高级数据结构】树状数组:一种高效的数据结构(一),基础算法,数据结构,算法,数据结构,蓝桥杯

即使要计算前一百万个数字的和,我们也只需要进行10~20次加法

这样将查询的时间复杂度降到了 O ( log ⁡ n ) O(\log n) O(logn),效率提升了很多

观察这个数组我们可以发现,数组中的某些数字是不会用到的,大家可以手动模拟一下,所有层的第偶数个数字在计算时都不会被用到,都有更好的方案来替代
【算法 & 高级数据结构】树状数组:一种高效的数据结构(一),基础算法,数据结构,算法,数据结构,蓝桥杯

去除掉不会被用到的数字之后,剩下的数字正好是 n n n个,这与数组的长度是一样的

所以,我们可以用一个与原数组长度相同的数组来装下这些数,这个数组就是一颗树状数组,数组中的每一个元素都对应下面的每一个区间,这些区间表示的都是每个对应的区间和
【算法 & 高级数据结构】树状数组:一种高效的数据结构(一),基础算法,数据结构,算法,数据结构,蓝桥杯
求和时,我们只需要找到对应的区间,将这些区间相加即可找到答案

修改某个数据时,我们也只需要向上找到包含它的所有区间修改即可

所有查询以及修改元素的操作,都可以在 O ( log ⁡ n ) O(\log n) O(logn)的时间复杂度内完成

3.2 树状数组的数学推导※

对于一个数 x x x,我们可以把它分解成二进制的形式:
2 i k + 2 i k − 1 + 2 i k − 2 + . . . + 2 i 1 2^{i_{k}}+2^{i_{k-1}} + 2^{i_{k-2}} + ... + 2^{i_{1}} 2ik+2ik1+2ik2+...+2i1其中, 2 i k 2^{i_k} 2ik表示 x x x的最高二进制位, 2 i 1 2^{i_{1}} 2i1表示最低二进制位 i k ≥ i k − 1 ≥ . . . ≥ i 1 ( k ≤ log ⁡ x ) i_{k} \geq i_{k-1} \geq ... \geq i_{1} (k \leq \log x) ikik1...i1(klogx)

假设我们要求 1 − x 1-x 1x的和,我们可以把区间分成 k k k个区间

( x − 2 i 1 , x ] (x-2^{i_1},x] (x2i1,x]
( x − 2 i 1 − 2 i 2 , x − 2 i 1 ] (x-2^{i_1}-2^{i_2},x-2^{i_1}] (x2i12i2,x2i1]
. . . ... ...
( 0 , x − 2 i 1 − 2 i 2 − . . . − 2 i k − 1 ] (0,x-2^{i_1}-2^{i_2}-...-2^{i_{k-1}}] (0,x2i12i2...2ik1]

这样我们把 x x x分成了 log ⁡ x \log x logx个区间,如果我们把所有区间的和都预处理出来,最多只需要加 log ⁡ x \log x logx次就可以将区间和算出来

如何预处理这些数呢?

我们看一下这些区间有什么性质:

  • 首先,每个区间都包含 2 i 2^i 2i个数
  • 每个区间 ( L , R ] (L,R] (L,R]的长度一定是 R R R的二进制表示的最后一位 1 1 1所对应的次幂

所以,利用lowbit函数,我们可以把贝格区间简化为 ( R − l o w b i t ( R ) + 1 , R ] (R-lowbit(R)+1,R] (Rlowbit(R)+1,R](该函数的定义如下)

def lowbit(x):
	return x & -x

于是,我们如果想用数组来记录区间和,可以用c[R]来表示区间和:c[x] = a[x - lowbit(x) + 1, x]

下面来看一下c[x]之间的关系:

【算法 & 高级数据结构】树状数组:一种高效的数据结构(一),基础算法,数据结构,算法,数据结构,蓝桥杯

经过这样的数学推导之后,我们得到了与上面介绍中一致的形式

下面来介绍一下如何计算的数学推导

  • 给出x,如何找到x的所有子节点

假设 x > 0 x > 0 x>0,则必然存在最后一位 1 1 1,假设这一位 1 1 1后面有 k k k 0 0 0,我们让 x − 1 x-1 x1,则后面有连续的 k k k 1 1 1,这每个 1 1 1都对应一个儿子,我们找每个儿子只需要每次减去最后一位 1 1 1,一直减 k k k次,直到变成 0 0 0

二进制表示解释如下:

c[x] ~ (x - lowbit(x) + 1, x]
x - 1 ~ ...1000(k个0)
儿子区间1 : (...0111, ...0110]
儿子区间2 : (...0110, ...0100]
儿子区间3 : (...0100, ...0000]
  • 如何通过子节点找父节点?

这个与找儿子结点是相反的,是一个迭代的过程,通常用于修改结点

假设给定一个x,修改完a[x]之后要修改哪些区间和?

假设 p p p是一个父节点,它的二进制表示要满足要找子节点之前的形式(最后一位1后面跟着若干个0),那么它的子节点一定满足那个1变成0,后面跟若干个1,后面是若干个0

我们只需要把上面的过程逆过来就可以了

每次加上一个lowbit(x),就找到直接父节点,然后一直往上加,直到加到那个父节点的位置是1,一共加 log ⁡ x \log x logx次,就可以找到所有父节点

对于一个要修改的a[x],修改操作的代码是:

for(int i = x; i <= n; i += lowbit(i)) tr[i] += c;

要想明白的是:为什么改完x之后,只需要更新tr数组的最多这么logx个位置(结合上面的黑白图)

查询(1~x的区间和)操作的代码(找子区间):

for(int i = x; i; i -= lowbit(x)) res += tr[i];

部分内容及灵感来源:
https://www.bilibili.com/video/BV1ce411u7qP/
https://www.acwing.com/file_system/file/content/whole/index/content/172493/文章来源地址https://www.toymoban.com/news/detail-838411.html

到了这里,关于【算法 & 高级数据结构】树状数组:一种高效的数据结构(一)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【算法每日一练]-结构优化(保姆级教程 篇4 树状数组,线段树,分块模板篇)

    目录 分块 分块算法步骤: 树状数组 树状数组步骤: 线段树点更新 点更新步骤: 线段树区间更新 区间更新步骤: 不同于倍增和前缀和与差分序列。 前缀和处理不更新的区间和 差分处理离线的区间更新问题 倍增处理离线的区间最值问题 分块,树状数组,线段树: 分块处

    2024年02月04日
    浏览(43)
  • 数据结构的魔法:高级算法优化实战

    🎉欢迎来到数据结构学习专栏~数据结构的魔法:高级算法优化实战 ☆* o(≧▽≦)o *☆嗨~我是IT·陈寒🍹 ✨博客主页:IT·陈寒的博客 🎈该系列文章专栏:数据结构学习 📜其他专栏:Java学习路线 Java面试技巧 Java实战项目 AIGC人工智能 数据结构学习 🍹文章作者技术和水平有

    2024年02月06日
    浏览(44)
  • 学习高级数据结构:探索平衡树与图的高级算法

    🎉欢迎来到数据结构学习专栏~学习高级数据结构:探索平衡树与图的高级算法 ☆* o(≧▽≦)o *☆嗨~我是IT·陈寒🍹 ✨博客主页:IT·陈寒的博客 🎈该系列文章专栏:数据结构学习 📜其他专栏:Java学习路线 Java面试技巧 Java实战项目 AIGC人工智能 数据结构学习 🍹文章作者技

    2024年02月09日
    浏览(45)
  • 深入学习与探索:高级数据结构与复杂算法

    🎉欢迎来到数据结构学习专栏~深入学习与探索:高级数据结构与复杂算法 ☆* o(≧▽≦)o *☆嗨~我是IT·陈寒🍹 ✨博客主页:IT·陈寒的博客 🎈该系列文章专栏:数据结构学习 📜其他专栏:Java学习路线 Java面试技巧 Java实战项目 AIGC人工智能 数据结构学习 🍹文章作者技术和

    2024年02月09日
    浏览(44)
  • 数据结构与算法(一): 稀疏数组

    在五子棋游戏或类似的游戏中,我们可以把整个棋盘想象成是一个有规律的二维数组,其值由0、1、2三个数字组成,0代表空白区域,1代表白子,2代表黑子。这种情况:即当一个数组中大部分元素为0或者为同一值时,存储该数组数据可以使用稀疏数组来对原始数组进行精简,

    2024年02月11日
    浏览(46)
  • 数据结构与算法 | 数组(Array)

    数组(Array)应该是最基础的数据结构之一,它由相同类型的元素组成的集合,并按照一定的顺序存储在内存中。每个元素都有一个唯一的索引,可以用于访问该元素。 数组索引(Index): 数组中的每个元素都有一个唯一的整数索引,从0开始计数。索引用于访问数组中的元素

    2024年02月08日
    浏览(50)
  • JavaScript数据结构与算法整理------数组

            数组的标准定义: 一个存储元素的线性集合,元素可以通过索引来任意存取,索引通常是数字,用来计算元素之间存储位置的偏移量 ,几乎所有的编程语言都有类似的数据结构,而JavaScript的数组略有不同。         JavaScript中的数组是一种特殊的对象,用来表示偏

    2023年04月24日
    浏览(62)
  • 数据结构与算法-数组(附阿里面试题)

            给你一个文件里面包含全国人民(14亿)的年龄数据(0~180),现在要你统计每一个年龄   有多少人?          给定机器为 单台+2CPU+2G内存。不得使用现成的容器,比如map等。 (这一句可以忽略)         在以上情况下你该如何以最高效的方法来解决这个

    2024年02月13日
    浏览(36)
  • 【数据结构和算法】寻找数组的中心下标

    Java基础合集 数据结构与算法合集 设计模式合集 多线程合集 分布式合集 ES合集 其他系列文章导航 文章目录 前言 一、题目描述 二、题解 2.1 前缀和的解题模板 2.1.1 最长递增子序列长度 2.1.2 寻找数组中第 k 大的元素 2.1.3 最长公共子序列长度 2.1.4 寻找数组中第 k 小的元素 2

    2024年02月04日
    浏览(53)
  • 【数据结构和算法】使用数组的结构实现链表(单向或双向)

    上文我们通过结构体的结构实现了队列 、以及循环队列的实现,我们或许在其他老师的教学中,只学到了用结构体的形式来实现链表、队列、栈等数据结构,本文我想告诉你的是,我们 可以使用数组的结构实现链表、单调栈、单调队列 目录 前言 一、用数组结构的好处 1.数

    2024年01月20日
    浏览(74)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包