【大厂AI课学习笔记NO.72】AI与云计算

这篇具有很好参考价值的文章主要介绍了【大厂AI课学习笔记NO.72】AI与云计算。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

AI项目依靠云计算,借助云的力量,快速的启动业务,是比较好的一种选择。

【大厂AI课学习笔记NO.72】AI与云计算,学习笔记,人工智能,人工智能,学习,笔记

AI模型训练过程中,出现算力突增,云计算成本低。

云平台提供一站式解决方案,创业公司的选择。

【大厂AI课学习笔记NO.72】AI与云计算,学习笔记,人工智能,人工智能,学习,笔记 

【大厂AI课学习笔记NO.72】AI与云计算,学习笔记,人工智能,人工智能,学习,笔记 

云端AI和边缘端的AI,是我们一直要取舍的问题。智能数据分析任务,模型训练任务,带宽要求不高的推理服务,是云端AI的特点。

【大厂AI课学习笔记NO.72】AI与云计算,学习笔记,人工智能,人工智能,学习,笔记 

边缘+终端的AI能力,用于本地实时响应的推理服务,数据收集、环境感知、人机交互、部分推理决策控制任务等的处理。

形成完整的解决方案。

延伸学习:


远端AI与边缘端AI的优势、区别及应用场景

一、远端AI与边缘端AI的概述

随着人工智能技术的不断发展,其应用场景也越来越广泛。根据数据处理和计算的位置不同,AI技术可以分为远端AI和边缘端AI。远端AI是指将数据传输到远程服务器进行处理和分析,而边缘端AI则是指将计算和数据处理能力下放到设备的边缘,即设备本身或离设备非常近的地方。

二、远端AI的优势和应用场景

远端AI的优势主要体现在其强大的计算能力和数据存储能力上。由于远端服务器通常具备高性能的计算硬件和大容量的存储设备,因此可以处理更加复杂的AI算法和模型,同时存储更多的数据。这使得远端AI在需要处理大量数据和进行高精度计算的应用场景中表现出色。

远端AI的应用场景非常广泛,例如云计算、大数据分析、机器学习等。在云计算中,远端AI可以提供弹性的计算和存储资源,满足用户不断变化的需求。在大数据分析中,远端AI可以对海量的数据进行深度挖掘和分析,为决策提供有力支持。在机器学习中,远端AI可以训练更加复杂的模型,提高预测和分类的准确性。

三、边缘端AI的优势和应用场景

边缘端AI的优势主要体现在其低延迟、高可用性和数据安全性上。由于计算和数据处理能力下放到设备的边缘,因此可以减少数据传输的延迟,提高响应速度。同时,边缘端AI还可以提高系统的可用性,即使在网络不稳定或断开的情况下,设备仍然可以正常运行和处理数据。此外,边缘端AI还可以增强数据的安全性,因为数据在本地处理,减少了被攻击和泄露的风险。

边缘端AI的应用场景也非常广泛,例如智能制造、智能交通、智能家居等。在智能制造中,边缘端AI可以实现设备的智能化和自动化控制,提高生产效率和产品质量。在智能交通中,边缘端AI可以实现车辆的自动驾驶和智能调度,提高交通的安全性和效率。在智能家居中,边缘端AI可以实现家居设备的智能化控制和管理,提高生活的便捷性和舒适度。

四、远端AI与边缘端AI的区别

远端AI和边缘端AI的主要区别在于数据处理和计算的位置不同。远端AI将数据传输到远程服务器进行处理和分析,而边缘端AI则将计算和数据处理能力下放到设备的边缘。这导致了两者在应用场景、优势等方面的差异。远端AI更适合处理大量数据和进行高精度计算的应用场景,而边缘端AI更适合需要低延迟、高可用性和数据安全性的应用场景。

五、远端AI与边缘端AI的结合案例

虽然远端AI和边缘端AI在应用场景和优势上有所不同,但它们并不是互相排斥的,而是可以相互结合和补充的。下面介绍几个远端AI与边缘端AI结合的案例:

  1. 智能交通系统:在智能交通系统中,可以利用边缘端AI实现车辆的实时感知和决策,同时利用远端AI进行全局的交通流分析和优化。这样既可以实现车辆的自动驾驶和智能调度,又可以提高整个交通系统的安全性和效率。

  2. 工业制造过程监控:在工业制造过程中,可以利用边缘端AI对生产线上的设备进行实时监控和故障预测,同时利用远端AI对生产数据进行深度分析和挖掘。这样既可以实现设备的智能化和自动化控制,又可以提高生产效率和产品质量。

  3. 智能家居系统:在智能家居系统中,可以利用边缘端AI实现家居设备的实时感知和控制,同时利用远端AI对用户的行为和需求进行深度学习和预测。这样既可以实现家居设备的智能化控制和管理,又可以提高生活的便捷性和舒适度。

六、小公司为何更适合在云上建立AI能力

对于小公司来说,建立自己的AI能力可能面临诸多挑战,如缺乏专业人才、资金紧张、技术更新快等。因此,选择在云上建立AI能力是一种更加明智的选择。具体原因如下:

  1. 降低成本:云服务提供商可以提供弹性的计算和存储资源,按需付费,避免了小公司购买和维护高性能计算硬件的成本。同时,云服务提供商还可以提供专业的技术支持和维护服务,降低了小公司的运维成本。

  2. 快速部署:云服务提供商提供了丰富的AI工具和框架,可以帮助小公司快速构建和部署AI应用。同时,云服务提供商还可以提供预训练的模型和算法库,加速了AI应用的开发进程。

  3. 保持技术更新:云服务提供商会不断更新其AI工具和框架,以适应最新的技术趋势和需求。小公司可以利用这些更新的工具和框架来保持其AI技术的先进性,而无需自己投入大量的人力和物力进行研发。

  4. 提高安全性:云服务提供商通常具备强大的安全防护能力,可以保护小公司的数据和模型免受攻击和泄露的风险。同时,云服务提供商还可以提供备份和恢复服务,确保小公司的数据和模型的可用性和可靠性。

综上所述,小公司更适合在云上建立AI能力,以降低成本、快速部署、保持技术更新和提高安全性。通过与云服务提供商合作,小公司可以更加专注于其核心业务和创新发展,同时利用其强大的AI能力来提升其竞争力和市场地位。

 文章来源地址https://www.toymoban.com/news/detail-838453.html

到了这里,关于【大厂AI课学习笔记NO.72】AI与云计算的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【大厂AI课学习笔记】【2.2机器学习开发任务实例】(9)模型优化

    模型训练后,就要进行模型优化了。 一般来讲,很简单,优化就是不换模型换参数,或者直接换模型。 换了之后来对比,最后选个最好的。 比如在本案例中,选择LinearRegression后,MSE从22下降到12,因此选择新的模型。 取前20个验证集数据,将标注数据与实际房价对比关系如

    2024年02月21日
    浏览(45)
  • 【大厂AI课学习笔记】【2.2机器学习开发任务实例】(7)特征构造

    特征分析之后,就是特征构造。 特征构造往往要进行数据的归一化。 在本案例中,我们将所有的数据,将所有特征区间调整为0~1之间。          如上图。 那么,为什么要进行归一化,又如何将数据,调整为0-1的,如何计算呢。 归一化(Normalization) 归一化是一种数据预

    2024年02月21日
    浏览(41)
  • 【大厂AI课学习笔记】【2.2机器学习开发任务实例】(8)模型训练

    好吧,搞了半天,都是围绕数据在干活,这也就验证了,我们说的,数据准备等工作,要占到机器学习项目一半以上的工作量和时间。而且数据决定了模型的天花板,算法只是去达到上限。 我们今天来学习模型训练! 首先,我们来进行线性回归训练,如上图。 当训练到los

    2024年02月21日
    浏览(39)
  • 【大厂AI课学习笔记】【2.2机器学习开发任务实例】(4)制作数据集

    要划分训练集和测试集。 训练集也要分为训练集和验证集。 延伸学习: 1. 数据集的划分比例 训练集 :通常占据整个数据集的60%-80%,用于训练模型。 验证集 :约占10%-20%,用于在训练过程中调整模型参数和超参数,以及进行早期停止训练等操作,防止过拟合。 测试集 :约

    2024年02月22日
    浏览(37)
  • 【大厂AI课学习笔记】【2.2机器学习开发任务实例】(1)搭建一个机器学习模型

    今天学习的是,如何搭建一个机器学习模型。 主要有以上的步骤: 原始数据采集 特征工程 数据预处理 特征提取 特征转换(构造) 预测识别(模型训练和测试) 在实际工作中,特征比模型更重要。 数据和特征的选择,已经决定了模型的天花板,模型算法只是去逼近这个上

    2024年02月21日
    浏览(41)
  • 人工智能与云计算实训室建设方案

    人工智能(Artificial Intelligence,简称AI)是一种模拟人类智能的科学和工程,通过使用计算机系统来模拟、扩展和增强人类的智能能力。人工智能涉及多个领域,包括机器学习、深度学习、自然语言处理、计算机视觉等。 云计算(Cloud Computing)是一种基于互联网的计算模式,

    2024年02月12日
    浏览(49)
  • 人工智能与云计算:如何实现医疗数据的高效共享

    作者:禅与计算机程序设计艺术 随着医疗数据量的增加、消费需求的提升、以及国际化的趋势加剧,数据共享成为医疗行业的一个重要方向。传统的数据共享模式主要依靠中心化共享平台(例如EHR)或联邦性数据共享框架(例如HL7),但在复杂多样的医疗信息环境中难以实现

    2024年02月15日
    浏览(49)
  • 大数据导论(2)---大数据与云计算、物联网、人工智能

     1. 首先从商业角度给云计算下一个定义:通过网络、以服务的方式为千家万户(包含政府、企业和个人用户)提供非常廉价的IT资源。  2. 云计算是一种全新的技术,包含了虚拟化、分布式存储、分布式计算、多租户等关键技术。云计算实现了通过网络提供可伸缩的、廉价

    2024年01月20日
    浏览(49)
  • 【大厂AI课学习笔记】【2.2机器学习开发任务实例】(3)数据准备和数据预处理

    项目开始,首先要进行数据准备和数据预处理。 数据准备的核心是找到这些数据,观察数据的问题。 数据预处理就是去掉脏数据。 缺失值的处理,格式转换等。 延伸学习: 在人工智能(AI)的众多工作流程中,数据准备与预处理占据着举足轻重的地位。这两个步骤不仅影响

    2024年02月19日
    浏览(45)
  • 数字化人才管理的人工智能与大数据与云计算结合应用:如何实现人力资源管理的智能化与云化...

    随着全球经济的快速发展,人力资源管理(HRM)在企业中的重要性不断提高。传统的人力资源管理方法已经不能满足企业在竞争中的需求,因此,人工智能(AI)、大数据和云计算等新技术逐渐被应用于人力资源管理领域,以实现人力资源管理的智能化与云化。 在这篇文章中,我们

    2024年04月11日
    浏览(89)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包