依赖注入 与 Wire 的使用

这篇具有很好参考价值的文章主要介绍了依赖注入 与 Wire 的使用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

控制反转和依赖注入

控制反转(Inversion of Control,缩写为IoC),是面向对象编程中的一种设计原则,可以用来减低计算机代码之间的耦合度。其中最常见的方式叫做依赖注入(Dependency Injection,简称DI)。依赖注入是生成灵活和松散耦合代码的标准技术,通过明确地向组件提供它们所需要的所有依赖关系。在 Go 中通常采用将依赖项作为参数传递给构造函数的形式:

构造函数NewBookRepo在创建BookRepo时需要从外部将依赖项db作为参数传入,我们在NewBookRepo中无需关注db的创建逻辑,实现了代码解耦。

// NewBookRepo 创建BookRepo的构造函数
func NewBookRepo(db *gorm.DB) *BookRepo {
	return &BookRepo{db: db}
}

区别于控制反转,如果在NewBookRepo函数中自行创建相关依赖,这将导致代码高度耦合并且难以维护和调试。

// NewBookRepo 创建BookRepo的构造函数
func NewBookRepo() *BookRepo {
  db, _ := gorm.Open(sqlite.Open("gorm.db"), &gorm.Config{})
	return &BookRepo{db: db}
}

为什么需要依赖注入工具

现在我们已经知道了应该在开发中尽可能地使用控制反转和依赖注入将程序解耦开来,从而写出灵活和易测试的程序。

在小型应用程序中,我们可以自行创建依赖并手动注入。但是在一个大型应用程序中,手动去实现所有依赖的创建和注入就会比较繁琐。

例如,在一些常见的HTTP服务中,会根据业务需要划分出不同的代码层:

├── internal
│   ├── conf
│   │   └── conf.go
│   ├── data
│   │   └── data.go
│   ├── server
│   │   └── server.go
│   └── service
│       └── service.go
└── main.go

我们的服务需要有一个配置,指定工作模式、连接的数据库和监听端口等信息。

// conf/conf.go

// NewDefaultConfig 返回默认配置,不需要依赖
func NewDefaultConfig() *Config {...}

我们这里定义了一个默认配置,当然后续可以支持从配置文件或环境变量读取配置信息。

在程序的data层,需要定义一个连接数据库的函数,它依赖上面定义的Config并返回一个*gorm.DB(这里使用gorm连接数据库)。

// data/data.go

// NewDB 返回数据库连接对象
func NewDB(cfg *conf.Config) (*gorm.DB, error) {...}

同时定义一个BookRepo,它有一些数据操作相关的方法。它的构造函数NewBookRepo依赖*gorm.DB,并返回一个*BookRepo

// data/data.go

type BookRepo struct {
	db *gorm.DB
}

func NewBookRepo(db *gorm.DB) *BookRepo {...}

Service层位于data层和Server层的中间,它负责实现对外服务。其中构造函数 NewBookService 依赖ConfigBookRepo

// service/service.go

type BookService struct {
	config *conf.Config
	repo   *data.BookRepo
}

func NewBookService(cfg *conf.Config, repo *data.BookRepo) *BookService {...}

server层又有一个NewServer构造函数,它依赖外部传入ConfigBookService

// server/server.go

type Server struct {
	config  *conf.Config
	service *service.BookService
}

func NewServer(cfg *conf.Config, srv *service.BookService) *Server {...}

main.go文件中又依赖Server创建一个app

// main.go

type Server interface {
	Run()
}

type App struct {
	server Server
}

func newApp(server Server) *App {...}

由于在程序中定义了大量需要依赖注入的构造函数,程序的main函数中会出现以下情形。所有依赖的创建和顺序都需要手动维护。

// main.go

func main() {
	cfg := conf.NewDefaultConfig()
	db, _ := data.NewDB(cfg)
	repo := data.NewBookRepo(db)
	bookSrv := service.NewBookService(cfg, repo)
	server := server.NewServer(cfg, bookSrv)
	app := newApp(server)

	app.Run()
}

我们确实需要一个工具来解决这类问题。

Wire

Wire 是一个专为依赖注入(Dependency Injection)设计的代码生成工具,它可以自动生成用于初始化各种依赖关系的代码,从而帮助我们更轻松地管理和注入依赖关系。

Wire 安装

我们可以执行以下命令来安装 Wire 工具:

$ go install github.com/google/wire/cmd/wire@latest

安装之前请确保已将 $GOPATH/bin 添加到环境变量 $PATH 里。

Wire 的基本使用

前置代码准备

虽然我们在前面已经通过 go install 命令安装了 Wire 命令行工具,但在具体项目中,我们仍然需要通过以下命令安装项目所需的 Wire 依赖,以便结合 Wire 工具生成代码:

$ go get github.com/google/wire@latest

接下来,让我们模拟一个简单的 web 博客项目,编写查询文章接口的相关代码,并使用 Wire 工具生成代码。

项目的目录结构如下:

.
├── ioc
│   └── article.go
├── main.go
├── service
│   └── article.go
├── web
│   └── article.go
└── wire.go

首先,我们先定义相关类型与方法,并提供对应的 初始化函数

  • 定义 PostHandler 结构体,创建注册路由的方法 RegisterRoutes 和查询文章路由处理的方法 GetPostById 以及初始化的函数 NewPostHandler,并且它依赖于 IPostService 接口:
type PostHandler struct {
	serv service.IPostService
}

func (h *PostHandler) RegisterRoutes(engine *gin.Engine) {
	engine.GET("/post/:id", h.GetPostById)
}

func (h *PostHandler) GetPostById(ctx *gin.Context) {
	content := h.serv.GetPostById(ctx, ctx.Param("id"))
	ctx.String(http.StatusOK, content)
}

func NewPostHandler(serv service.IPostService) *PostHandler {
	return &PostHandler{serv: serv}
}
  • 定义 IPostService 接口,并提供了一个具体实现 PostService,接着创建 GetPostById 方法,用于处理查询文章的逻辑,然后提供初始化函数 NewPostService,该函数返回 IPostService 接口类型:
type IPostService interface {
	GetPostById(ctx context.Context, id string) string
}

var _ IPostService = (*PostService)(nil)

type PostService struct {
}

func (s *PostService) GetPostById(ctx context.Context, id string) string {
	return "欢迎访问博客"
}

func NewPostService() IPostService {
	return &PostService{}
}
  • 定义一个初始化 gin.Engine 函数 NewGinEngineAndRegisterRoute,该函数依赖于 *handler.PostHandler 类型,函数内部调用相关 handler 结构体的方法创建路由:
func NewGinEngineAndRegisterRoute(postHandler *web.PostHandler) *gin.Engine {
    engine := gin.Default()
    postHandler.RegisterRoutes(engine)
    return engine
}

使用 Wire 工具生成代码

前置代码已经准备好了,接下来我们编写核心代码,以便 Wire 工具能生成相应的依赖注入代码。

  • 首先我们需要创建一个 wire 的配置文件,通常命名为 wire.go。在这个文件里,我们需要定义一个或者多个注入器函数(Injector 函数,接下来的内容会对其进行解释),以便指引 Wire 工具生成代码。
func InitializeApp() *gin.Engine {
    wire.Build(
        web.NewPostHandler,
        service.NewPostService,
        ioc.NewGinEngineAndRegisterRoute,
    )

    return &gin.Engine{}
}

在上述代码中,我们定义了一个用于初始化 gin.Engine 的注入器函数,在该函数内部,我们使用了 wire.Build 方法来声明依赖关系,其中包括 PostHandlerPostService 和 InitGinEngine 作为依赖的构造函数。

wire.Build 的作用是 连接或绑定我们之前定义的所有初始化函数。当我们运行 wire 工具来生成代码时,它就会根据这些依赖关系来自动创建和注入所需的实例。

注意:文件首行必须加上 //go:build wireinject 或 // +build wireinject(go 1.18 之前的版本使用) 注释,作用是只有在使用 wire 工具时才会编译这部分代码,其他情况下忽略。

  • 接下来在 wire.go 文件所处目录下执行 wire 命令,生成 wire_gen.go 文件,内容如下所示:
// Code generated by Wire. DO NOT EDIT.

//go:generate go run github.com/google/wire/cmd/wire
//go:build !wireinject
// +build !wireinject

package main

import (
	"github.com/gin-gonic/gin"
	"golang-example/wire/blog/ioc"
	"golang-example/wire/blog/service"
	"golang-example/wire/blog/web"
)

// Injectors from wire.go:

func InitializeApp() *gin.Engine {
	iPostService := service.NewPostService()
	postHandler := web.NewPostHandler(iPostService)
	engine := ioc.NewGinEngineAndRegisterRoute(postHandler)
	return engine
}

生成的代码和我们手写区别不大,当我们的组件很多,依赖关系复杂的时候,我们才会感觉到 Wire 工具的好处。

Wire 的核心概念

Wire 有两个核心概念:提供者(providers)和注入器(injectors)。

Wire 提供者(providers)

提供者:一个可以产生值的函数,也就是有返回值的函数。例如入门代码里的 NewPostHandler 函数:

func NewPostHandler(serv service.IPostService) *PostHandler {  
	return &PostHandler{serv: serv}  
}

返回值不仅限于一个,如果有需要的话,可以额外添加一个 error 的返回值。

如果提供者过多的时候,我们还可以以分组的形式进行连接,例如将 post 相关的 handler 和 service 进行组合:

package web  
  
var PostSet = wire.NewSet(NewPostHandler, service.NewPostService)

使用 wire.NewSet 函数将提供者进行分组,该函数返回一个 ProviderSet 结构体。不仅如此,wire.NewSet 还能对多个 ProviderSet 进行分组 wire.NewSet(PostSet, XxxSet) 。

对于之前的 InitializeApp 函数,我们可以这样升级:

func InitializeAppV2() *gin.Engine {  
	wire.Build(  
		web.PostSet,  
		ioc.NewGinEngineAndRegisterRoute,  
	)  
	return &gin.Engine{}  
}

然后通过 Wire 命令生成代码,和之前的结果一致。

Wire 注入器(injectors)

注入器(injectors)的作用是将所有的提供者(providers)连接起来,回顾一下我们之前的代码:

func InitializeApp() *gin.Engine {  
	wire.Build(  
		web.NewPostHandler,  
		service.NewPostService,  
		ioc.NewGinEngineAndRegisterRoute,  
	)  
	return &gin.Engine{}  
}

InitializeApp 函数就是一个注入器,函数内部通过 wire.Build 函数连接所有的提供者,然后返回 &gin.Engine{},该返回值实际上并没有使用到,只是为了满足编译器的要求,避免报错而已,真正的返回值来自 ioc.NewGinEngineAndRegisterRoute

Wire 高级应用

绑定接口

回顾我们之前编写的代码:

package web

···

func NewPostHandler(serv service.IPostService) *PostHandler {
    return &PostHandler{serv: serv}
}

···

pakacge service

···

func NewPostService() IPostService {
    return &PostService{}
}

···

NewPostHandler 函数依赖于 service.IPostService 接口,NewPostService 函数返回的是 IPostService 接口的值,这两个地方的类型匹配,因此 Wire 工具能够正确识别并生成代码。然而,这并不是推荐的最佳实践。因为在 Go 中的 最佳实践 是返回 具体的类型 的值,所以最好让 NewPostService 返回具体类型 PostService 的值:

func NewPostService() *PostService {  
	return &PostService{}  
}

但是这样,Wire 工具将认为 IPostService 接口类型与 PostService 类型不匹配,导致生成代码失败。因此我们需要修改注入器的代码:

func InitializeApp() *gin.Engine {  
	wire.Build(  
		web.NewPostHandler,  
		service.NewPostService,  
		ioc.NewGinEngineAndRegisterRoute,  
		wire.Bind(new(service.IPostService), new(*service.PostService)),  
	)  
	return &gin.Engine{}  
}

使用 wire.Bind 来建立接口类型和具体的实现类型之间的绑定关系,这样 Wire 工具就可以根据这个绑定关系进行类型匹配并生成代码。

wire.Bind 函数的第一个参数是指向所需接口类型值的指针,第二个实参是指向实现该接口的类型值的指针。

结构体提供者(Struct Providers)

Wire 库有一个函数是 wire.Struct,它能根据现有的类型进行构造结构体,我们来看看下面的例子:

package main

type Name string

func NewName() Name {
    return"Jack"
}

type PublicAccount string

func NewPublicAccount() PublicAccount {
    return"Hello World"
}

type User struct {
    MyName          Name
    MyPublicAccount PublicAccount
}

func InitializeUser() *User {
    wire.Build(
       NewName,
       NewPublicAccount,
       wire.Struct(new(User), "MyName", "MyPublicAccount"),
    )
    return &User{}
}

上述代码中,首先定义了自定义类型 Name 和 PublicAccount 以及结构体类型 User,并分别提供了 Name 和 PublicAccount 的初始化函数(providers)。然后定义一个注入器(injectorsInitializeUser,用于构造连接提供者并构造 *User 实例。

使用 wire.Struct 函数需要传递两个参数,第一个参数是结构体类型的指针值,另一个参数是一个可变参数,表示需要注入的结构体字段的名称集。

根据上述代码,使用 Wire 工具生成的代码如下所示:

func InitializeUser() *User {
    name := NewName()
    publicAccount := NewPublicAccount()
    user := &User{
       MyName:          name,
       MyPublicAccount: publicAccount,
    }
    return user
}

如果我们不想返回指针类型,只需要修改 InitializeUser 函数的返回值为非指针即可。

绑定值

有时候,我们可以在注入器中通过 值表达式 给一个类型进行赋值,而不是依赖提供者(providers)。

func InjectUser() User {  
	wire.Build(wire.Value(User{MyName: "Jack"}))  
	return User{}  
}

在上述代码中,使用 wire.Value 函数通过表达式直接指定 MyName 的值,生成的代码如下所示:

func InjectUser() User {
    user := _wireUserValue
    return user
}

var (
    _wireUserValue = User{MyName: "Jack"}
)

需要注意的是,值表达式将被复制到生成的代码文件中。

对于接口类型,可以使用 InterfaceValue

func InjectPostService() service.IPostService {
    wire.Build(wire.InterfaceValue(new(service.IPostService), &service.PostService{}))
    return nil
}

使用结构体字段作为提供者(providers)

有些时候,你可以使用结构体的某个字段作为提供者,从而生成一个类似 GetXXX 的函数。

func GetUserName() Name {
    wire.Build(
       NewUser,
       wire.FieldsOf(new(User), "MyName"),
    )
    return ""
}

你可以使用 wire.FieldsOf 函数添加任意字段,生成的代码如下所示:

func GetUserName() Name {
    user := NewUser()
    name := user.MyName
    return name
}

func NewUser() User {
    return User{MyName: Name("Jack"), MyPublicAccount: PublicAccount("HelloWorld")}
}

清理函数

如果一个提供者创建了一个需要清理的值(例如关闭一个文件),那么它可以返回一个闭包来清理资源。注入器会用它来给调用者返回一个聚合的清理函数,或者在注入器实现中稍后调用的提供商返回错误时清理资源。

并且 Wire 对 Provider 的返回值个数及顺序有以下限制:

  • 第一个返回值是需要生成的对象
  • 如果有 2 个返回值,第二个返回值必须是 func() 或 error
  • 如果有 3 个返回值,第二个返回值必须是 func(),而第三个返回值必须是
// db.go
func InitGormDB()(*gorm.DB, func(), error) {
    // 初始化db链接
    // ...
    cleanFunc := func(){
        db.Close()
    }

    return db, cleanFunc, nil
}

// wire.go
func BuildInjector() (*Injector, func(), error) {
   wire.Build(
      common.InitGormDB,
      // ...
      NewInjector
   )

   return new(Injector), nil, nil
}

// 生成的wire_gen.go
func BuildInjector() (*Injector, func(), error) {
   db, cleanup, err := common.InitGormDB()
   // ...
   return injector, func(){
       // 所有provider的清理函数都会在这里
       cleanup()
   }, nil
}

// main.go
injector, cleanFunc, err := app.BuildInjector()
defer cleanFunc()

备用注入器语法

如果你不喜欢将类似这种写法 → return &gin.Engine{} 放在你的注入器函数声明的末尾,你可以用 panic 来更简洁地写它:

func InitializeGin() *gin.Engine {  
	panic(wire.Build(/* ... */))  
}

总结

在本文中,我们详细探讨了 Go Wire 工具的基本用法和高级特性。它是一个专为依赖注入设计的代码生成工具,它不仅提供了基础的依赖解析和代码生成功能,还支持多种高级用法,如接口绑定和构造结构体。

依赖注入的设计模式应用非常广泛,Wire 工具让依赖注入在 Go 语言中变得更简单。

本文的所有代码在这里。文章来源地址https://www.toymoban.com/news/detail-838580.html

到了这里,关于依赖注入 与 Wire 的使用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Spring第二讲:SpringIoC控制反转、依赖注入

    4、1什么是IoC 在传统的 Java 应用中,一个类想要调用另一个类中的属性或方法,通常会先在其代码中通过 new 的方式将后者的对象创建出来,然后才能实现属性或方法的调用。但在 Spring 应用中,Java 对象创建的控制权是掌握在 IoC 容器手里,开发者通过XML或注解的配置将Java对

    2024年02月13日
    浏览(45)
  • spring--Ioc控制反转/DI依赖注入

    1.概念:在使用对象的时候,由主动的new转换为外部提供对象,将对象创建的控制权交给外部,即控制反转 2.spring提供了一个容器,称为IOC容器,用来从当ioc中的外部 3.被管理或者被创建的对象在ioc中被叫做bean 使用步骤 1.导入依赖 spring-context 依赖,用到xml文件就需导入 2.创建

    2024年02月12日
    浏览(39)
  • 深入理解WPF中的依赖注入和控制反转

    在WPF开发中, 依赖注入(Dependency Injection)和控制反转(Inversion of Control)是程序解耦的关键,在当今软件工程中占有举足轻重的地位,两者之间有着密不可分的联系 。今天就以一个简单的小例子,简述如何在WPF中实现依赖注入和控制反转,仅供学习分享使用,如有不足之处

    2024年02月06日
    浏览(49)
  • 6.3Java EE——控制反转与依赖注入

    一、控制反转的概念 传统面向对象程序设计原则         控制反转(Inversion of Control,缩写为IoC)是面向对象编程中的一个设计原则,用来降低程序代码之间的耦合度。在传统面向对象编程中,获取对象的方式是用new主动创建一个对象,也就是说应用程序掌握着对

    2024年02月16日
    浏览(34)
  • Go 项目依赖注入wire工具最佳实践介绍与使用

    目录 一、引入 二、控制反转与依赖注入 三、为什么需要依赖注入工具 3.1 示例 3.2 依赖注入写法与非依赖注入写法 四、wire 工具介绍与安装 4.1 wire 基本介绍 4.2 安装 五、Wire 的基本使用 5.1 前置代码准备 5.2 使用 Wire 工具生成代码 六、Wire 核心技术 5.1 抽象语法树分析 5.2 模板

    2024年04月08日
    浏览(42)
  • CommunityToolkit.Mvvm8.1 IOC依赖注入控制反转(5)

      本系列文章导航 https://www.cnblogs.com/aierong/p/17300066.html https://github.com/aierong/WpfDemo (自我Demo地址) 希望提到的知识对您有所提示,同时欢迎交流和指正 作者:aierong 出处:https://www.cnblogs.com/aierong     CommunityToolkit.Mvvm包不提供ioc功能,但是官方建议使用:Microsoft.Extensions.DependencyInject

    2023年04月14日
    浏览(50)
  • Springboot 入门指南:控制反转和依赖注入的含义和实现方式

    目录 一、什么是控制反转(IoC)? 二、什么是依赖注入(DI)? 三、如何在 springboot 中使用 IoC 和 DI? 总结 控制反转(Inversion of Control,简称 IoC)是一种设计原则,它的目的是降低代码之间的耦合度,提高模块化和可测试性。控制反转的含义是,将对象的创建、配置和管理

    2024年02月11日
    浏览(41)
  • 深入理解 Spring IoC 和 DI:掌握控制反转和依赖注入的精髓

    在本文中,我们将介绍 IoC (控制反转)和 DI (依赖注入)的概念,以及如何在 Spring 框架中实现它们。 控制反转是软件工程中的一个原则,它将对象或程序的某些部分的控制权转移给容器或框架。我们最常在面向对象编程的上下文中使用它。 与传统编程相比,传统编程中我

    2024年02月04日
    浏览(55)
  • Spring学习笔记(二)Spring的控制反转(设计原则)与依赖注入(设计模式)

    是一种设计原则,降低程序代码之间的耦合度 对象由Ioc容器统一管理,当程序需要使用对象时直接从IoC容器中获取。这样对象的控制权就从应用程序转移到了IoC容器 依赖注入是一种消除类之间依赖关系的设计模式。例如,A类要依赖B类,A类不再直接创建B类,而是把这种依赖

    2024年02月19日
    浏览(37)
  • Spring5学习随笔-IOC(反转控制)、DI(依赖注入)和创建复杂对象

    学习视频:【孙哥说Spring5:从设计模式到基本应用到应用级底层分析,一次深入浅出的Spring全探索。学不会Spring?只因你未遇见孙哥】 控制:对于成员变量赋值的控制权 反转控制:把对于成员变量赋值的控制权,从代码中反转(转移)到Spring工厂和配置文件中。 好处:解耦合

    2024年02月05日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包